- #1
redtree
- 331
- 14
- TL;DR Summary
- Lorentz invariance of the 4-momentum is modeled utilizing the energy momentum relation. Instead of this approach, is the Lorentz invariance of the 4-momentum ever modeled as the group action of the Lorentz group acting on the 4-momentum (similar to what is done with 4-position)?
I apologize for the simple question, but here it is.
The energy momentum relation models changes in energy ##E## and 3-momentum ##\textbf{p}_3 = \{ p_1,p_2,p_3 \}## with changes in velocity given ##(\textbf{p}_4)^2 = M^2##, where ##M## denotes mass and ##\textbf{p}_4## denotes 4-momentum, where $$M^2 = (\gamma M)^2 - (\gamma M \textbf{v})^2 $$
where ##\textbf{v}## denotes relative velocity, ##E= \gamma M## and ##\textbf{p}_3 = \gamma M \textbf{v}##.
However, for the 4-position ##\textbf{x}_4##
$$\textbf{x}_4' = \{ x_0',\textbf{x}_3'\} = \Lambda \textbf{x}_4$$
where ##\textbf{x}_3 = \{ x_1,x_2,x_3 \}## and
$$x_0' = \gamma x_0 + \gamma \textbf{v} \textbf{x}_3$$
$$\textbf{x}_3'= \gamma \textbf{x}_3 + \gamma \textbf{v} x_0 $$
Similarly, why not the following for ##\textbf{p}_4##?
$$\textbf{p}_4' = \{ E',\textbf{p}_3'\} = \Lambda \textbf{p}_4$$
where $$E' = \gamma E + \gamma \textbf{v} \textbf{p}_3$$
$$\textbf{p}_3'= \gamma \textbf{p}_3 + \gamma \textbf{v} E $$
as this leaves $$(\textbf{p}_4)^2 = (\textbf{p}_4')^2$$
The energy momentum relation models changes in energy ##E## and 3-momentum ##\textbf{p}_3 = \{ p_1,p_2,p_3 \}## with changes in velocity given ##(\textbf{p}_4)^2 = M^2##, where ##M## denotes mass and ##\textbf{p}_4## denotes 4-momentum, where $$M^2 = (\gamma M)^2 - (\gamma M \textbf{v})^2 $$
where ##\textbf{v}## denotes relative velocity, ##E= \gamma M## and ##\textbf{p}_3 = \gamma M \textbf{v}##.
However, for the 4-position ##\textbf{x}_4##
$$\textbf{x}_4' = \{ x_0',\textbf{x}_3'\} = \Lambda \textbf{x}_4$$
where ##\textbf{x}_3 = \{ x_1,x_2,x_3 \}## and
$$x_0' = \gamma x_0 + \gamma \textbf{v} \textbf{x}_3$$
$$\textbf{x}_3'= \gamma \textbf{x}_3 + \gamma \textbf{v} x_0 $$
Similarly, why not the following for ##\textbf{p}_4##?
$$\textbf{p}_4' = \{ E',\textbf{p}_3'\} = \Lambda \textbf{p}_4$$
where $$E' = \gamma E + \gamma \textbf{v} \textbf{p}_3$$
$$\textbf{p}_3'= \gamma \textbf{p}_3 + \gamma \textbf{v} E $$
as this leaves $$(\textbf{p}_4)^2 = (\textbf{p}_4')^2$$
Last edited: