- #1
thaiqi
- 160
- 8
- TL;DR Summary
- I read a deduction in one book, but I got a question in it.
I read in one book about the deduction of Lorentz transform. It writes:
'
$$
\begin{aligned}
t^\prime & = \xi t + \zeta x (1) \\
x^\prime & = \gamma x + \delta t (2) \\
y^\prime & = y (3) \\
z^\prime & = z (4)
\end{aligned}
$$
from (2), it gives:
$$
\begin{aligned}
{dx \over dt} = -{ \delta \over \gamma} = v (5)
\end{aligned}
$$
from (1) and (2), they give:
$$
\begin{aligned}
{dx^\prime \over dt^\prime} = {\delta \over \xi} = - v (6)
\end{aligned}
$$
so,
$$
\begin{aligned}
\xi = \gamma
\end{aligned}
$$
and,
$$
\begin{aligned}
\delta = - \gamma v
\end{aligned}
$$
let
$$
\begin{aligned}
\zeta = - \eta \gamma
\end{aligned}
$$
we have:
$$
\begin{aligned}
t^\prime & = \gamma ( t - \eta x ) (7) \\
x^\prime & = \gamma ( x - v t) (8) \\
y^\prime & = y (9) \\
z^\prime & = z (10)
\end{aligned}
$$
...
we can get
$$
\begin{aligned}
\eta = v / c^2
\end{aligned}
$$
...
'
My question lies in formula (6), it can give
$$
\begin{aligned}
{dx^\prime \over dt^\prime} = {\delta \over \xi} = - v
\end{aligned}
$$
as the above, but it can also give
$$
\begin{aligned}
{dx^\prime \over dt^\prime} = {\gamma \over \zeta}
\end{aligned}
$$
such that:
$$
\begin{aligned}
{dx^\prime \over dt^\prime} = {\gamma \over \zeta} = - {{1} \over {\eta}} = - {c^2 \over v} \neq -v (??)
\end{aligned}
$$
So why??
'
$$
\begin{aligned}
t^\prime & = \xi t + \zeta x (1) \\
x^\prime & = \gamma x + \delta t (2) \\
y^\prime & = y (3) \\
z^\prime & = z (4)
\end{aligned}
$$
from (2), it gives:
$$
\begin{aligned}
{dx \over dt} = -{ \delta \over \gamma} = v (5)
\end{aligned}
$$
from (1) and (2), they give:
$$
\begin{aligned}
{dx^\prime \over dt^\prime} = {\delta \over \xi} = - v (6)
\end{aligned}
$$
so,
$$
\begin{aligned}
\xi = \gamma
\end{aligned}
$$
and,
$$
\begin{aligned}
\delta = - \gamma v
\end{aligned}
$$
let
$$
\begin{aligned}
\zeta = - \eta \gamma
\end{aligned}
$$
we have:
$$
\begin{aligned}
t^\prime & = \gamma ( t - \eta x ) (7) \\
x^\prime & = \gamma ( x - v t) (8) \\
y^\prime & = y (9) \\
z^\prime & = z (10)
\end{aligned}
$$
...
we can get
$$
\begin{aligned}
\eta = v / c^2
\end{aligned}
$$
...
'
My question lies in formula (6), it can give
$$
\begin{aligned}
{dx^\prime \over dt^\prime} = {\delta \over \xi} = - v
\end{aligned}
$$
as the above, but it can also give
$$
\begin{aligned}
{dx^\prime \over dt^\prime} = {\gamma \over \zeta}
\end{aligned}
$$
such that:
$$
\begin{aligned}
{dx^\prime \over dt^\prime} = {\gamma \over \zeta} = - {{1} \over {\eta}} = - {c^2 \over v} \neq -v (??)
\end{aligned}
$$
So why??