- #1
jag
- 8
- 4
- Homework Statement
- 1. Show that the infinitesimal boost by v_j along the x_j axis is given by the Lorentz transformation (see attempted solution)
2. Show that infinitesimal rotation by theta_j by x_j is given by (see attempted solution)
- Relevant Equations
- Explained in attempted solution
1. Show that the infinitesimal boost by ##v^j## along the ##x^j##-axis is given by the Lorentz transformation
$$\Lambda_{\nu}^{\mu} = \begin{pmatrix}
1 & v^1 & v^2 & v^3 \\
v^1 & 1 & 0 & 0 \\
v^2 & 0 & 1 & 0 \\
v^3 & 0 & 0 & 1 \\
\end{pmatrix}$$
Attempted solution
I know that for x-axis
$$\Lambda_{\nu}^{\mu} = \begin{pmatrix}
\gamma^1 & \beta^1\gamma^1 & 0 & 0 \\
\beta^1\gamma^1 & \gamma^1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}$$
Replacing ##\gamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}}## and ##\beta = \frac{v}{c}## and setting ##c = 1## with ##v \ll c##, I can get the following for the x-axis
$$\Lambda_{\nu}^{\mu} = \begin{pmatrix}
1 & v^1 & 0 & 0 \\
v^1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}$$
Similarly, I am constructing the y-axis Lorentz transformation
$$\Lambda_{\nu}^{\mu} = \begin{pmatrix}
1 & 0 & v^2 & 0 \\
0 & 1 & 0 & 0 \\
v^2 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}$$
and z-axis Lorentz transformation
$$\Lambda_{\nu}^{\mu} = \begin{pmatrix}
1 & 0 & 0 & v_3 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
v^3 & 0 & 0 & 1 \\
\end{pmatrix}$$
Then, I'm thinking of adding together the matrices but it doesn't yield the final answer, so I'm stuck here. Any pointers will be helpful.
2. Show that infinitesimal rotation by ##\theta^j## about ##x^j## is given by
$$\Lambda_{\nu}^{\mu} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & \theta^3 & -\theta^2 \\
0 & -\theta^3 & 1 & \theta^1 \\
0 & \theta^2 & -\theta^1 & 1 \\
\end{pmatrix}$$
Attempted solution
I'm reading through https://en.wikipedia.org/wiki/Rotation_matrix but as far I can understand rotation matrix are presented in ##\cos## and ##\sin##, so I'm not sure how to proceed here.
Looking forward to any assistance.
$$\Lambda_{\nu}^{\mu} = \begin{pmatrix}
1 & v^1 & v^2 & v^3 \\
v^1 & 1 & 0 & 0 \\
v^2 & 0 & 1 & 0 \\
v^3 & 0 & 0 & 1 \\
\end{pmatrix}$$
Attempted solution
I know that for x-axis
$$\Lambda_{\nu}^{\mu} = \begin{pmatrix}
\gamma^1 & \beta^1\gamma^1 & 0 & 0 \\
\beta^1\gamma^1 & \gamma^1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}$$
Replacing ##\gamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}}## and ##\beta = \frac{v}{c}## and setting ##c = 1## with ##v \ll c##, I can get the following for the x-axis
$$\Lambda_{\nu}^{\mu} = \begin{pmatrix}
1 & v^1 & 0 & 0 \\
v^1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}$$
Similarly, I am constructing the y-axis Lorentz transformation
$$\Lambda_{\nu}^{\mu} = \begin{pmatrix}
1 & 0 & v^2 & 0 \\
0 & 1 & 0 & 0 \\
v^2 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}$$
and z-axis Lorentz transformation
$$\Lambda_{\nu}^{\mu} = \begin{pmatrix}
1 & 0 & 0 & v_3 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
v^3 & 0 & 0 & 1 \\
\end{pmatrix}$$
Then, I'm thinking of adding together the matrices but it doesn't yield the final answer, so I'm stuck here. Any pointers will be helpful.
2. Show that infinitesimal rotation by ##\theta^j## about ##x^j## is given by
$$\Lambda_{\nu}^{\mu} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & \theta^3 & -\theta^2 \\
0 & -\theta^3 & 1 & \theta^1 \\
0 & \theta^2 & -\theta^1 & 1 \\
\end{pmatrix}$$
Attempted solution
I'm reading through https://en.wikipedia.org/wiki/Rotation_matrix but as far I can understand rotation matrix are presented in ##\cos## and ##\sin##, so I'm not sure how to proceed here.
Looking forward to any assistance.