- #1
Haorong Wu
- 420
- 90
- TL;DR Summary
- How to do a Lorentz transformation on mode functions?
Suppose we can boost from a frame ##S## to another frame ##S'## by using a Lorentz transformation ##\Lambda##. Also, ##\phi(x^\mu;\omega,\mathbf k)## is a mode function of a scalar field in frame ##S##. Then, how do we express this mode function in frame ##S'##? Here is my attempt.
First, the Klein-Gordon equation is Lorentz invariant, so we can use ##x^\mu=\Lambda^{~~\mu}_\nu x'^\nu## to change the coordinates in ##\phi(x^\mu;\omega,\mathbf k)##.
Second, the four wave vector is also transformed by ##k^\mu=\Lambda^{~~\mu}_\nu k'^\nu##.
In total, I simply transform the coordinates and four wave vector in the mode function ##\phi(x^\mu;\omega,\mathbf k)## to ##\phi(x'^\mu;\omega',\mathbf k')##. Is this correct?
Thanks ahead.
First, the Klein-Gordon equation is Lorentz invariant, so we can use ##x^\mu=\Lambda^{~~\mu}_\nu x'^\nu## to change the coordinates in ##\phi(x^\mu;\omega,\mathbf k)##.
Second, the four wave vector is also transformed by ##k^\mu=\Lambda^{~~\mu}_\nu k'^\nu##.
In total, I simply transform the coordinates and four wave vector in the mode function ##\phi(x^\mu;\omega,\mathbf k)## to ##\phi(x'^\mu;\omega',\mathbf k')##. Is this correct?
Thanks ahead.