- #1
metiman
- 87
- 3
I am planning some low power heating devices in the 10 - 20 watt range and have been considering the usual high resistance alloys: nichrome, kanthal, and stainless steels (304, 316, 630). I have noticed that all of these materials are expensive. Is there some reason I could not just use steel or even aluminum?
I realize that high resistance metals are preferred because for a given voltage you can use either a thicker or shorter wire but, why must i put so much voltage across it? Could I just use cheap steel wire and low voltage? I was planning to use 12 volts before but now I am thinking of building a step down transformer with a 1 volt or even 0.5 volt secondary winding and putting that across a steel or even aluminum wire such that V^2/R is in the 10-20 range.
This got me thinking about who decided what voltage is high or low anyway and why higher voltages are generally preferred. Apparently from the conductor's pov only current matters. While P = VI in general in the context of heat losses in a conductor that is a misleading equation. As is V^2/R. Or is the current density per cross sectional area what really matters? Why is I^2/R the only form that matters here? I am curious about what is really going on in that conductor and what equations describe it quantitatively.
The pro high voltage arguments are usually in the form of high voltage means less current for a given V x I and that means less waste heat in a conductor because again apparently the EMF is only relevant insofar as it increases the current in a given conductor.
But wait. Waste heat is what I want. The more the better. So I am thinking maybe that secondary transformer winding should be at even lower voltage. 1 mV perhaps? Water analogies make me wonder if there is a point at which no current will flow at all at some low level of EMF. How about 1 picovolt across a superconductor? Would that make a good heater?
I realize that high resistance metals are preferred because for a given voltage you can use either a thicker or shorter wire but, why must i put so much voltage across it? Could I just use cheap steel wire and low voltage? I was planning to use 12 volts before but now I am thinking of building a step down transformer with a 1 volt or even 0.5 volt secondary winding and putting that across a steel or even aluminum wire such that V^2/R is in the 10-20 range.
This got me thinking about who decided what voltage is high or low anyway and why higher voltages are generally preferred. Apparently from the conductor's pov only current matters. While P = VI in general in the context of heat losses in a conductor that is a misleading equation. As is V^2/R. Or is the current density per cross sectional area what really matters? Why is I^2/R the only form that matters here? I am curious about what is really going on in that conductor and what equations describe it quantitatively.
The pro high voltage arguments are usually in the form of high voltage means less current for a given V x I and that means less waste heat in a conductor because again apparently the EMF is only relevant insofar as it increases the current in a given conductor.
But wait. Waste heat is what I want. The more the better. So I am thinking maybe that secondary transformer winding should be at even lower voltage. 1 mV perhaps? Water analogies make me wonder if there is a point at which no current will flow at all at some low level of EMF. How about 1 picovolt across a superconductor? Would that make a good heater?