- #1
Prove It
Gold Member
MHB
- 1,465
- 24
Evaluate the line integral $\displaystyle \begin{align*} I = \int_{(0,0,0)}^{\left( 5, \frac{1}{2}, \frac{\pi}{2} \right) }{ 6\,x^2\,\mathrm{d}x + \left[ 6\,z^2 + 9\,\mathrm{e}^{9\,y} \cos{ \left( 10\,z \right) } \right] \,\mathrm{d}y + \left[ 12\,y\,z - 10 \,\mathrm{e}^{9\,y}\sin{ \left( 10\,z \right) } \right] \,\mathrm{d}z } \end{align*}$
I am assuming that this line integral is along the straight line from $\displaystyle \begin{align*} (0,0,0) \end{align*}$ to $\displaystyle \begin{align*} \left( 5, \frac{1}{2}, \frac{\pi}{2} \right) \end{align*}$, which has equation $\displaystyle \begin{align*} \left( x, y, z \right) = t\left( 5, \frac{1}{2} , \frac{\pi}{2} \right) \, , \,t \in \left[ 0, 1 \right] \end{align*}$, so
$\displaystyle \begin{align*} x &= 5\,t \implies \mathrm{d}x = 5\,\mathrm{d}t \\ y &= \frac{1}{2}\,t \implies \mathrm{d}y = \frac{1}{2}\,\mathrm{d}t \\ z &= \frac{\pi}{2}\,t \implies \mathrm{d}z = \frac{\pi}{2}\,\mathrm{d}t \end{align*}$
and so the integral becomes
$\displaystyle \begin{align*} I &= \int_{t=0}^{t=1}{ 6\left( 5\,t \right) ^2 \cdot 5\,\mathrm{d}t + \left[ 6\left( \frac{\pi}{2}\,t \right) ^2 + 9\,\mathrm{e}^{9 \cdot \frac{1}{2}\,t} \cos{ \left( 10 \cdot \frac{\pi}{2}\,t \right) } \right] \cdot \frac{1}{2}\,\mathrm{d}t + \left[ 12 \cdot \frac{1}{2}\,t \cdot \frac{\pi}{2}\,t - 10 \,\mathrm{e}^{ 9 \cdot \frac{1}{2}\,t } \sin{ \left( 10\cdot \frac{\pi}{2}\,t \right) } \right] \cdot \frac{\pi}{2}\,\mathrm{d}t } \\ &= \int_0^1{ \left[ 750\,t^2 + \frac{3\,\pi ^2}{4}\,t^2 + \frac{9}{2}\,\mathrm{e}^{\frac{9}{2}\,t} \cos{ \left( 5\,\pi\,t \right) } + \frac{3\,\pi ^2}{2} \, t^2 - 5\,\pi\,\mathrm{e}^{\frac{9}{2}\,t}\sin{\left( 5\,\pi\,t \right) } \right] \,\mathrm{d}t } \\ &= \int_0^1{ \left[ \left( \frac{3000 + 9\,\pi^2}{4} \right) t^2 + \frac{9}{2}\,\mathrm{e}^{\frac{9}{2}\,t}\cos{\left( 5\,\pi\,t \right) } - 5\,\pi\,\mathrm{e}^{\frac{9}{2}\,t}\sin{ \left( 5\,\pi\,t \right) } \right] \,\mathrm{d}t } \\ &= \left\{ \left( \frac{1000 + 3\,\pi^2}{4} \right) t^3 + \frac{9}{2} \left[ \frac{\mathrm{e}^{\frac{9}{2}\,t}}{\left( \frac{9}{2} \right) ^2 + \left( 5\,\pi \right) ^2} \right] \left[ \frac{9}{2} \, \cos{ \left( 5\,\pi\,t \right) } + 5\,\pi \sin{ \left( 5\,\pi\,t \right) } \right] - 5\,\pi \left[ \frac{ \mathrm{e}^{ \frac{9}{2} \,t } }{ \left( \frac{9}{2} \right) ^2 + \left( 5\,\pi \right) ^2 } \right] \left[ \frac{9}{2} \, \sin{ \left( 5\,\pi\,t \right) } - 5\,\pi \cos{ \left( 5 \, \pi \, t \right) } \right] \right\} _0^1 \\ &= \left\{ \left( \frac{1000 + 3\,\pi ^2}{4} \right) t^3 + \left[ \frac{4\,\mathrm{e}^{\frac{9}{2}\,t}}{81 + 100\,\pi^2} \right] \left[ \left( \frac{81 + 100\,\pi ^2}{4} \right) \cos{ \left( 5\,\pi\,t \right) } \right] \right\} _0^1 \\ &= \left[ \left( \frac{1000 + 3\,\pi ^2}{4} \right) t^3 + \mathrm{e}^{\frac{9}{2}\,t} \cos{ \left( 5\,\pi\,t \right) } \right] _0^1 \\ &= \frac{1000 + 3\,\pi ^2}{4} - \mathrm{e}^{\frac{9}{2}} - 1 \\ &= \frac{996 + 3\,\pi ^2 - 4\,\mathrm{e}^{\frac{9}{2}}}{4} \\ &\approx 166.385\,072 \end{align*}$