- #1
karush
Gold Member
MHB
- 3,269
- 5
$\text{14 The velocity of a body of mass $m$ falling from rest of gravity is given by the equation}\\$
\begin{align*}\displaystyle
V&=\sqrt{\frac{mg}{k}}\tanh\left[\frac{gk}{m} \right]
\end{align*}
$\text{$k$ is a constant that depends on the bodys aerodynamic properties \\ and the density of the air}\\$
$\text{$g$ is the gravitational constant}\\$
$\text{$t$ is the number of seconds into the fall.}\\$
$\text{Find the limiting velocity}$\begin{align*}\displaystyle
&\lim_{t \to \infty}v
\end{align*}The choices are
A) There is no limiting g speed
B) 0.01 ft/sec
C) 177.95 ft/sec
D) 56.27 ft/secIm not real sure how to set this up except to set $k$ to zero or just plain absent
then we are dealing with the constant of gravitation pull
\begin{align*}\displaystyle
V&=\sqrt{\frac{mg}{k}}\tanh\left[\frac{gk}{m} \right]
\end{align*}
$\text{$k$ is a constant that depends on the bodys aerodynamic properties \\ and the density of the air}\\$
$\text{$g$ is the gravitational constant}\\$
$\text{$t$ is the number of seconds into the fall.}\\$
$\text{Find the limiting velocity}$\begin{align*}\displaystyle
&\lim_{t \to \infty}v
\end{align*}The choices are
A) There is no limiting g speed
B) 0.01 ft/sec
C) 177.95 ft/sec
D) 56.27 ft/secIm not real sure how to set this up except to set $k$ to zero or just plain absent
then we are dealing with the constant of gravitation pull