MHB -m99.53 ty-plane hypotheses of Theorem 2.4.2.

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Theorem
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 9090
State where in the ty-plane the hypotheses of Theorem 2.4.2 are satisfied

$\displaystyle y^\prime= \frac{t-y}{2t+5y}$
ok I don't see how this book answer was derived since not sure how to separate varibles
$2t+5y>0 \textit{ or }2t+5y<0$
 

Attachments

  • 2_4_2.png
    2_4_2.png
    16 KB · Views: 118
Physics news on Phys.org
This is very concerning. You have posted a series of question where you seem to have no idea what the question is asking. In each one you have immediately jumped to trying to solve the differential equation when the question given does not ask you to do so.

Here the problem just asks you to "State where in the ty-plane the hypotheses of theorem 2.4.2 are satisfied". The hypotheses of theorem 2.4.2 are that the function f(t,y) in the differential equation y'= f(t,y) be continuous. Here the differential equation is $y'= \frac{t- y}{2t+ 5y}$. So the problem is asking "where is $
\frac{t- y}{2t+ 5y}$ continuous?"

You should know that a rational function, such as this, is continuous as long as the denominator is not 0. So we want to find (t, y) such that $2t+ 5y\ne 0$. The simplest way to do that is to say where it is 0! 2t+ 5y= 0 is a straight line in the ty-plane. That is equivalent to the line y= -(2/5)t, a line through the origin with slope -2/5. The hypotheses of theorem 2.4.2 are satisfied every where EXCEPT on that line.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...

Similar threads

Back
Top