I Magnetic dipole in vacuum near absolute zero

AI Thread Summary
A single atom in a vacuum at near absolute zero is expected to retain its magnetic dipole due to its intrinsic properties. The magnetic moment is determined by the atom's ground state and its total spin. Atoms with half-integer total spin will definitely exhibit a magnetic moment, even in the absence of external fields or interactions. There is curiosity about whether this phenomenon has been experimentally verified. Overall, the existence of a magnetic dipole in such conditions is supported by theoretical understanding.
JonAce73
Messages
5
Reaction score
0
TL;DR Summary
Will the magnetic dipole of a single atom in vacuum at near zero kelvin still exist?
Consider a single atom (or particle) in a vacuum (without electric, magnetic or gravitational field) at near zero kelvin (i.e., no photons or particles striking it). I am curious if it will still have a magnetic dipole? If there still is (which I believe), had this been shown experimentally?
 
Physics news on Phys.org
Why would you think that the atom's magnetic moment will not exist near zero Kelvin? The atom will have the magnetic moment of its ground state. If it has a half-integer total spin, it will most certainly have a magnetic moment.
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top