- #1
happyparticle
- 456
- 21
- Homework Statement
- Magnetic energy inside a coaxial cable
- Relevant Equations
- ##E_b = \frac{1}{2\mu_0} \int\int\int B^2 dv##
Hi,
I have to find the magnetic energy inside a coaxial cable of inner radius ##a## and outer radium ##b##, ##I = I##
By using Ampere's law
if ##r<a##
##B = \frac{\mu_0Ir}{2\pi a^2}##
if ##a<r<b##
##B = \frac{\mu_0I}{2\pi r}##
if ##r>b##
##B = 0##
Then, the energy in a magnetic field ##E_b = \frac{1}{2\mu_0} \int\int\int B^2 dv##
Since I have 2 different ##B## inside the cable, I'm not sure how to use this formula.
I have to find the magnetic energy inside a coaxial cable of inner radius ##a## and outer radium ##b##, ##I = I##
By using Ampere's law
if ##r<a##
##B = \frac{\mu_0Ir}{2\pi a^2}##
if ##a<r<b##
##B = \frac{\mu_0I}{2\pi r}##
if ##r>b##
##B = 0##
Then, the energy in a magnetic field ##E_b = \frac{1}{2\mu_0} \int\int\int B^2 dv##
Since I have 2 different ##B## inside the cable, I'm not sure how to use this formula.
Last edited by a moderator: