- #1
Frostman
- 115
- 17
- Homework Statement
- Calculate the magnetic field ##\underline B## generated by a current ##I## in an infinitely long straight wire, knowing the shape of the electric field generated by a straight-line and uniform distribution of static electric charges, the transformation laws of electromagnetic fields for Lorentz boost, and appropriately using the superposition principle for electromagnetic fields.
- Relevant Equations
- Gauss theorem
Lorentz transformations for current density and electromagnetic fields
First I wrote in ##S'##, by using Gauss theorem
$$
\int_{\Sigma} \underline E' \cdot \hat n d\Sigma = \frac Q {\varepsilon_0} \rightarrow E'(r)2\pi rH=\frac{\lambda'H}{\varepsilon_0}
$$
$$
\underline E'(\underline r)=\frac{\lambda'}{2\pi\varepsilon_0r}\hat r
$$
Its components are:
##E_x'=\frac{\lambda'}{2\pi\varepsilon_0r}\cos\theta##
##E_y'=\frac{\lambda'}{2\pi\varepsilon_0r}\sin\theta##
##E_z'=0##
Now I notice that ##Q=\rho'HA## and ##\lambda'=\frac{Q}{H}##, so ##\rho'=\frac{\lambda'}{A}##
With this information, I can made ##J'\mu=(\rho', 0, 0, 0)## and consider a ##S## frame moving respect ##S'## with a speed ##\underline v=- v\hat z##. For a Lorentz boost we have:
##\rho = \gamma(\rho'-vJ_z')=\gamma\rho'##
##J_x=J_x'=0##
##J_y=J_y'=0##
##J_z=\gamma(J_z'-v\rho')=-\gamma v\rho'##
Now we have ##J\mu=(\gamma\rho', 0, 0, -\gamma v \rho')##, it appears a current density in ##S## frame. I evaluate the new fields:
##E_x=\gamma(E_x'+vB_y')=\gamma E_x' = \gamma \frac{\lambda'}{2\pi\varepsilon_0r}\cos\theta##
##E_x=\gamma(E_y'-vB_x')=\gamma E_y' = \gamma \frac{\lambda'}{2\pi\varepsilon_0r}\sin\theta##
##E_z=E_z'=0##
##B_x=\gamma(B_x'-vE_y')=-\gamma v E_y' = \gamma v \frac{\lambda'}{2\pi\varepsilon_0r}\sin\theta = \frac{J_zA}{2\pi\varepsilon_0r}\sin\theta=\frac{I}{2\pi\varepsilon_0r}\sin\theta##
##B_y=\gamma(B_y'-vE_x')=\gamma v E_x' = \gamma v \frac{\lambda'}{2\pi\varepsilon_0r}\cos\theta = \frac{-J_zA}{2\pi\varepsilon_0r}\cos\theta=- \frac{I}{2\pi\varepsilon_0r}\cos\theta##
##B_z=B_z'=0##
I observe that it shows an electric field in ##S## frame that we should delete, and we do this by using superposition principle for electromagnetic fields introducing a linear charge density that delete ##E_x## and ##E_y##, and its value is ##\tilde{\lambda} = -\gamma \lambda'##.
I hope that everything is right also at the level of signs given the reference systems I used, I shouldn't have mistaken the Lorentz transformations.
I have a doubt, beyond what I have done. Surface ##A## does not undergo any contraction since the motion is orthogonal to the surface, right?
The moment I introduce a new linear charge density ##\tilde{\lambda}##, the magnetic field becomes more intense due to the fact that more current is added, especially it should double right?