- #1
nemesiswes
- 81
- 0
Basically I just wanted to know how magnetic fields work when a highly Permeable material is placed close to a magnet. I mean normally a magnetic field as far as I know expands out it all directions whether it is from a wire or a coil or a magnet, but what happens when a Permeable material is placed very to close to the source so as to confine the magnetic field within it. As far as I know there is still a magnetic field outside of it, even if it was a super permeable material. The way I have always heard and imagined it work was like this.
The magnetic field from the coil, wire or magnet expand outward, this field encounters the permeable material, at this point the magnetic field causes a reorientation of the atoms within the material causing them to point in the same direction as the magnetic field from the wire, coil or magnet and thereby increasing the over-all magnetic field strength within the material. Now this magnetized material acts like a magnet and causes more of the external magnetic field (wire , coil or magnet ) to enter it since it would be the path of least reluctance now (less resistance). There will still be a outside field though since not all of the field will be redirected to the permeable material.
So is that right?
Also is there still an external magnetic field outside a toroid electromagnet? I know the magnetic field is supposed to be completely inclosed within the core but it would seem there is still a field outside it.
I guess what I am trying to get too is this, is a magnetic field like an expanding bubble, that's how I have always imagined it. Obviously not exactly a bubble because of the different geometry's of the coils or magnets and this has an effect on the way the field looks but for the most part, I view it as a bubble. Like I view it as a bubble that expands outward at all time's for practically forever until it is so weak it can't be detected at-least, so from my point of view it moves outward regardless of the material it moves through, it only has an effect on that material like the permeable materials, it increases in strength inside it but outside it does not (actually decreases outside because of the field redirection),( basically more the field is concentrated closer to the source or permeable material) the field outside will be redirected a bit because the material now acts like a magnet itself which changes the way the field moves. I know magnetic field's always come back on themselves too, but from how i see it, the field still moves outward but like a bubble, it is always connected to both poles but still able to forever expand outwards just with increasingly deminished strength, even after it is no loger detectable, it is still there moving outward.
Also when exactly does a magnetic field become part of a electric field to form a electromagnetic field? does the magnetic field like actually break off from the source , (antenna )
So, How far off in crazy land am I? Please correct me if needed, which I sure, all of this makes sense and from what I have read and talked about on other forums about magnetic fields, it seems like this is correct.
You can probably tell that I really need to visualize something to understand it, lol. I even visualize math to understand it, like doing it on paper in my head, lol
The magnetic field from the coil, wire or magnet expand outward, this field encounters the permeable material, at this point the magnetic field causes a reorientation of the atoms within the material causing them to point in the same direction as the magnetic field from the wire, coil or magnet and thereby increasing the over-all magnetic field strength within the material. Now this magnetized material acts like a magnet and causes more of the external magnetic field (wire , coil or magnet ) to enter it since it would be the path of least reluctance now (less resistance). There will still be a outside field though since not all of the field will be redirected to the permeable material.
So is that right?
Also is there still an external magnetic field outside a toroid electromagnet? I know the magnetic field is supposed to be completely inclosed within the core but it would seem there is still a field outside it.
I guess what I am trying to get too is this, is a magnetic field like an expanding bubble, that's how I have always imagined it. Obviously not exactly a bubble because of the different geometry's of the coils or magnets and this has an effect on the way the field looks but for the most part, I view it as a bubble. Like I view it as a bubble that expands outward at all time's for practically forever until it is so weak it can't be detected at-least, so from my point of view it moves outward regardless of the material it moves through, it only has an effect on that material like the permeable materials, it increases in strength inside it but outside it does not (actually decreases outside because of the field redirection),( basically more the field is concentrated closer to the source or permeable material) the field outside will be redirected a bit because the material now acts like a magnet itself which changes the way the field moves. I know magnetic field's always come back on themselves too, but from how i see it, the field still moves outward but like a bubble, it is always connected to both poles but still able to forever expand outwards just with increasingly deminished strength, even after it is no loger detectable, it is still there moving outward.
Also when exactly does a magnetic field become part of a electric field to form a electromagnetic field? does the magnetic field like actually break off from the source , (antenna )
So, How far off in crazy land am I? Please correct me if needed, which I sure, all of this makes sense and from what I have read and talked about on other forums about magnetic fields, it seems like this is correct.
You can probably tell that I really need to visualize something to understand it, lol. I even visualize math to understand it, like doing it on paper in my head, lol
Last edited: