- #1
Mark Zhu
- 32
- 3
- Homework Statement
- Consider a circuit composed of two parallel metal tracks, a generator which produces a constant current i, and a straight wire, mass m, which can slide along the tracks. The coefficient of friction between the wire and the tracks is "mu" and the tracks are "l" apart. Suppose there were a constant, vertical "vector B" field. Relate the magnitude of "vector B" to the angle the tracks make with the horizontal, "theta," assuming that "theta" has the maximum value it can have without the wire starting to move.
- Relevant Equations
- Vector F = q * (vector v x vector B)
F_s = mu * n
For the front wire, I got the magnitude of the magnetic field in terms of the magnitude of the magnetic force, the current, "l," and the "theta". I am unsure how to proceed because I thought that the magnetic force is independent of any other forces. I am also just lost in general. Any help would be greatly appreciated. Thanks.