MHB Mahesh's question via email about Laplace Transforms (2)

AI Thread Summary
The discussion focuses on solving the integral equation involving the function f(t) using Laplace Transforms. The convolution theorem is applied, leading to the transformation of the integral equation into a solvable algebraic form. After manipulating the equation, the Laplace Transform F(s) is expressed as F(s) = (7(s + 3))/(s^2(s + 6)). The inverse transform is computed using partial fractions, resulting in the final solution f(t) = (79/12) + (7/2)t - (7/12)e^(-6t). This demonstrates the effective application of Laplace Transforms in solving integral equations.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
$\displaystyle f\left( t \right)$ satisfies the integral equation

$\displaystyle f\left( t \right) = 7\,t - 3\int_0^t{ f\left( u \right) \,\mathrm{e}^{-3\,\left( t - u \right) } \,\mathrm{d}u } $

Find the solution to the integral equation using Laplace Transforms.

This requires the convolution theorem:

$\displaystyle \int_0^t{f\left( u \right) \,g\left( t- u \right) \,\mathrm{d}u } = F\left( s \right) \,G\left( s \right) $

In this case, $\displaystyle g\left( t - u \right) = \mathrm{e}^{-3\,\left( t - u \right) } \implies g\left( t \right) = \mathrm{e}^{-3\,t } \implies G\left( s \right) = \frac{1}{s + 3}$.

So upon taking the Laplace Transform of the integral equation, we have

$\displaystyle \begin{align*} F\left( s \right) &= \frac{7}{s^2} - 3\,F\left( s \right) \left( \frac{1}{s + 3} \right) \\
F\left( s \right) &= \frac{7}{s^2} - \frac{3\,F\left( s \right) }{s + 3} \\
F\left( s \right) + \frac{3\,F\left( s \right) }{s + 3} &= \frac{7}{s^2} \\
\left( 1 + \frac{3}{s + 3} \right) F\left( s \right) &= \frac{7}{s^2} \\
\left( \frac{s + 6}{s + 3} \right) F\left( s \right) &= \frac{7}{s^2} \\
F\left( s \right) &= \frac{7 \left( s + 3 \right) }{s^2\,\left( s + 6 \right) } \\
F\left( s\right) &= \frac{7\,s + 21}{s^2\,\left( s + 6 \right) } \end{align*}$

Taking the Inverse Transform will require Partial Fractions:

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s + 6} &\equiv \frac{7\,s + 21}{s^2\,\left( s + 6 \right) } \\
A\,s\left( s + 6 \right) + B\,\left( s + 6 \right) + C\,s^2 &= 7\,s + 21 \end{align*}$

Let $\displaystyle s = 0 \implies 6\,B = 21 \implies B = \frac{7}{2} $

Let $\displaystyle s = -6 \implies 36\,C = -21 \implies C = -\frac{7}{12} $

Thus $\displaystyle A\,s\left( s + 6 \right) + \frac{7}{2} \left( s + 6 \right) - \frac{7}{12}\,s^2 = 7\,s + 21 $.

Let $\displaystyle s = 1 $

$\displaystyle \begin{align*} 7\,A + \frac{7}{2} \cdot 7 - \frac{7}{12} \cdot 1^2 &= 7\cdot 7 + 21 \\
7\,A + \frac{49}{2} - \frac{7}{12} &= 70 \\
7\,A + \frac{294}{12} - \frac{7}{12} &= \frac{840}{12} \\
7\,A + \frac{287}{12} &= \frac{840}{12} \\
7\,A &= \frac{553}{12} \\
A &= \frac{79}{12} \end{align*}$

$\displaystyle \begin{align*} F\left( s \right) &= \frac{79}{12} \left( \frac{1}{s} \right) + \frac{7}{2} \left( \frac{1}{s^2} \right) - \frac{7}{12} \left( \frac{1}{s + 6} \right) \\
f\left( t \right) &= \frac{79}{12} + \frac{7}{2}\,t - \frac{7}{12} \,\mathrm{e}^{-6\,t} \end{align*}$
 
Mathematics news on Phys.org
This is your work:

This requires the convolution theorem:

$\displaystyle \int_0^t{f\left( u \right) \,g\left( t- u \right) \,\mathrm{d}u } = F\left( s \right) \,G\left( s \right) $

In this case, $\displaystyle g\left( t - u \right) = \mathrm{e}^{-3\,\left( t - u \right) } \implies g\left( t \right) = \mathrm{e}^{-3\,t } \implies G\left( s \right) = \frac{1}{s + 3}$.

So upon taking the Laplace Transform of the integral equation, we have

Edit starts here: (look for the boxes, the first box is an extra 3, all the other boxes are the corrections for removing said 3).

$\displaystyle \begin{align*} F\left( s \right) &= \frac{7}{s^2} - 3\,F\left( s \right) \left( \frac{1}{s + 3} \right) \\
F\left( s \right) &= \frac{7}{s^2} - \frac{\underbrace{\boxed{3}}_{\text{this is the extra 3 I removed from here on out}}\, F\left( s \right) }{s + 3} \\
F\left( s \right) + \frac{F\left( s \right) }{s + 3} &= \frac{7}{s^2} \\
\left( 1 + \frac{\boxed{1}}{s + 3} \right) F\left( s \right) &= \frac{7}{s^2} \\
\left( \frac{s +\boxed{4}}{s + 3} \right) F\left( s \right) &= \frac{7}{s^2} \\
F\left( s \right) &= \frac{7 \left( s + 3 \right) }{s^2\,\left( s +\boxed{4} \right) } \\
F\left( s\right) &= \frac{7\,s + 21}{s^2\,\left( s +\boxed{4}\right) } \end{align*}$

Taking the Inverse Transform will require Partial Fractions:

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s + \boxed{4}} &\equiv \frac{7\,s + 21}{s^2\,\left( s + \boxed{4}\right) } \\
A\,s\left( s +\boxed{4}\right) + B\,\left( s + \boxed{4}\right) + C\,s^2 &= 7\,s + 21 \end{align*}$

Let $\displaystyle s = 0 \implies\boxed{4}\,B = 21 \implies B = \frac{21}{\boxed{4}} $

Let $\displaystyle s = -4 \implies\boxed{16}\,C =\boxed{-7} \implies C =\boxed{ -\frac{7}{16}} $

Thus $\displaystyle A\,s\left( s + \boxed{4}\right) +\boxed{-\frac{7}{16}} \left( s + \boxed{4}\right) +\boxed{- \frac{7}{16}}\,s^2 = 7\,s + 21 $.

Let $\displaystyle s = 1 $

I’m going to stop here.
 
  • Like
Likes Greg Bernhardt
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top