Making a 2D Problem into a 1D Problem

  • Thread starter Thread starter chessguy103
  • Start date Start date
  • Tags Tags
    1d 2d
AI Thread Summary
The discussion focuses on converting a 2D pressure problem involving two bolted plates into a 1D beam problem to estimate the maximum distance between bolts. The pressure (w) in psi needs to be converted into a distributed load (q) in lb/in, which can be achieved by multiplying the pressure by the thickness of the beam. Participants emphasize the importance of considering the deformation characteristics of the plates and the strength of the bolts, recommending a safety factor to prevent failure. For accurate design, consulting mechanical engineering resources, such as Shigley's Design book, is advised. The goal is to ensure the structural integrity of the assembly under pressure.
chessguy103
Messages
13
Reaction score
3
TL;DR Summary
How can I take a 2D pressure problem and then it into a 1D beam problem?
Hi,

Forgive me for the crowded drawing, but please reference the attached screenshot. Let’s say I have 2 plates bolted together by some bolts (red), and on the inside is a pressure w pushing the top plate up, in psi (lb/in^2). In order to get an estimate for the maximum distance between bolts, I want to take the circled part and treat it as a 1D problem.

My question is, how do I take that w, and convert it into q in lb/in?

Thanks
 

Attachments

  • 86C5C921-DD87-49BB-B10B-E46037D4E242.jpeg
    86C5C921-DD87-49BB-B10B-E46037D4E242.jpeg
    39.5 KB · Views: 128
Engineering news on Phys.org
It is rather unclear just what "W" and "Q" are, could you give their definition?

For a simplified approach, take the area in square inches that is exposed to pressure and multiply by the pressure.
Total_Force (on plate) = Area(sq.in.) x Pressure (psi)

To find the force on each bolt, divide Total_Force by number_of_bolts.
force_per_bolt = (Total_Force) / (number_of_bolts)

Then you have to decide if the bolts you want to use are strong enough to hold the thing together. (don't forget a safety factor! You don't want it to take someones arm off if it fails.)

Also decide if the plates are stiff enough so they don't deform like a balloon under pressure; and strong enough that they don't tear through at the bolt heads.

For more details, we need one of the Mechanical Engineers to chime in.

Cheers,
Tom
 
  • Like
Likes Lnewqban and chessguy103
W is the pressure on the inside surface of the plate in psi, and q is the distributed load (lb/in) when looking at the problem from a 1D point of view, with 2 of the bolts acting as simple supports. The exact values don’t really matter. But let’s say I wanted to prescribe a certain deflection of that beam, and need to solve for L, the distance between the supports (aka bolts). That’s my goal.

So in order to go from psi to lb/in, would I multiply w by the “thickness” of the 1D beam that I’m considering to get to q?

I’m not sure if I’m thinking about this correctly, but that’s what I’m trying to get to.
 
An uniformly loaded plate deforms in
chessguy103 said:
Summary: How can I take a 2D pressure problem and then it into a 1D beam problem?

Hi,

Forgive me for the crowded drawing, but please reference the attached screenshot. Let’s say I have 2 plates bolted together by some bolts (red), and on the inside is a pressure w pushing the top plate up, in psi (lb/in^2). In order to get an estimate for the maximum distance between bolts, I want to take the circled part and treat it as a 1D problem.

My question is, how do I take that w, and convert it into q in lb/in?

Thanks
A plate bolted all around like that deforms very different from a beam supported by hinges.

Anyway, you could just imaginarily remove two rows of bolts on the longer side of the plate, and use the same value of pressure for uniformly distributed load and consider only the width of the plate supporting that load.

The remaining two rows of bolts will function more like two solid embedments at each end of the beam than hinges, but considering hinges would give you a higher value of safety factor.
 
Last edited:
Lnewqban said:
A plate bolted all around like that deforms very different from a beam supported by hinges.

Anyway, you could just imaginarily remove two rows of bolts on the longer side of the plate, and use the same value of pressure for uniformly distributed load and consider only the width of the plate supporting that load.

The remaining two rows of bolts will function more like two solid embedments at each end of the beam than hinges, but considering hinges would give you a higher value of safety factor.
If this is a real problem and not a purely academic one, you should consult Chapter 8 in Shigley's Design book (or a similar Machine Design book) to arrive a a proper bolt design that accounts for preload, tensile stress area, etc.
 
Last edited by a moderator:
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Back
Top