MHB Mangoqueen54's question at Yahoo Answers involving a trigonometric identity

AI Thread Summary
The discussion revolves around proving the trigonometric identity (Sin2x - sinx) / (cos2x + cosx) = (1 - cosx) / sinx. The proof begins by transforming the left side using double-angle identities, resulting in a fraction that can be simplified through factoring. Common factors are canceled, leading to a form that allows the application of Pythagorean identities. The final simplification confirms the identity as desired. The conversation highlights the challenges of responding to questions on platforms where users may delete their inquiries.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Trigonometry proof SAVE ME!?

(Sin2x - sinx) / (cos2x + cosx) = (1- cosx) / sinx

show your work

Thanks so much!

Here is a link to the question:

http://answers.yahoo.com/question/index?qid=20130130130636AAOqgvz

I have posted a link there so the OP can find my response.
 
Last edited:
Mathematics news on Phys.org
Re: mangoqueen54's question at Yahoo! Answers involging a trigonometric identity

Hello mangoqueen54,

We are given to prove:

$\displaystyle \frac{\sin(2x)-\sin(x)}{\cos(2x)+\cos(x)}=\frac{1-\cos(x)}{\sin(x)}$

Traditionally we begin on the left side, and try to obtain the right side.

Applying the double-angle identities for sine and cosine, the left side becomes:

$\displaystyle \frac{2\sin(x)\cos(x)-\sin(x)}{2\cos^2(x)+\cos(x)-1}$

We may factor as follows:

$\displaystyle \frac{\sin(x)(2\cos(x)-1)}{(2\cos(x)-1)(\cos(x)+1)}$

Divide out common factors and multiply by $\displaystyle 1=\frac{\cos(x)-1}{\cos(x)-1}$

$\displaystyle \frac{\sin(x)}{\cos(x)+1}\cdot\frac{\cos(x)-1}{\cos(x)-1}$

$\displaystyle \frac{\sin(x)(\cos(x)-1)}{\cos^2(x)-1}$

Use a Pythagorean identity in the denominator and multiply by $\displaystyle 1=\frac{-1}{-1}$ :

$\displaystyle \frac{\sin(x)(1-\cos(x))}{\sin^2(x)}$

Simplify:

$\displaystyle \frac{1-\cos(x)}{\sin(x)}$

Shown as desired.
 
Re: mangoqueen54's question at Yahoo! Answers involging a trigonometric identity

It's very frustrating at Yahoo as so many people there delete their question while you are working on a reply. (Headbang)(Headbang)(Headbang)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top