- #1
chowdhury
- 36
- 3
If I have an equation, let's say,
$$\mathbf{A} = \mathbf{B} + \mathbf{C}^{Transpose} \cdot \left( \mathbf{D}^{-1} \mathbf{C} \right),$$
1.) How would I write using index notation? Here
I wrote it as $$A_{ijkl} = B_{ijkl} + C_{ijk}^{Transpose} D_{ll}^{-1} C_{ijk} $$
$$A_{ijkl} = B_{ijkl} + C_{kij} D_{ll}^{-1} C_{ijk} $$
2.) How to denote the transpose of a third rank tensor? $$C^{Transpose}$$ or $$C^{t}$$ or is there a succinct way of writing it?
$$\mathbf{A} = \mathbf{B} + \mathbf{C}^{Transpose} \cdot \left( \mathbf{D}^{-1} \mathbf{C} \right),$$
1.) How would I write using index notation? Here
- A is a 4th rank tensor
- B is a 4th rank tensor
- C is a 3rd rank tensor
- D is a 2nd rank tensor
I wrote it as $$A_{ijkl} = B_{ijkl} + C_{ijk}^{Transpose} D_{ll}^{-1} C_{ijk} $$
$$A_{ijkl} = B_{ijkl} + C_{kij} D_{ll}^{-1} C_{ijk} $$
2.) How to denote the transpose of a third rank tensor? $$C^{Transpose}$$ or $$C^{t}$$ or is there a succinct way of writing it?