MHB Mapping and inverse mapping of open sets and their complements

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Assume that $$ f: E \to Y \,\,\, , E \subset X$$ then can we say that $$f(E^c)=f(E)^c$$ what about the inverse mapping $$f^{-1}: V \to X \,\,\, , V\subset Y$$ do we have to have some restrictions on f and its inverse ? My immediate answer is that we have to have a bijection in order to conclude that but I am not sure.
 
Physics news on Phys.org
ZaidAlyafey said:
Assume that $$ f: E \to Y \,\,\, , E \subset X$$ then can we say that $$f(E^c)=f(E)^c$$ what about the inverse mapping $$f^{-1}: V \to X \,\,\, , V\subset Y$$ do we have to have some restrictions on f and its inverse ? My immediate answer is that we have to have a bijection in order to conclude that but I am not sure.

If we have $$ f: E \to Y,\ E \subset X$$ then can we say that $$f(E^c)=\varnothing$$, since f is not defined for any element that is not in E, while $f(E)^c = Y \backslash f(E)$, which is not necessarily empty.

The inverse as you define it, is only defined if f is injective.
That is since each element in the domain of $f^{-1}$ must have exactly 1 image.
Or put otherwise, the mapping between E and V must be bijective.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top