- #1
claratanone
- 2
- 0
Find the marginal rate of technical substitution for the following production function:
\(\displaystyle Q=10(0.2L^{-0.5} +0.8K^{-0.5})^{-2}\)
Here is my attempt so far:
\(\displaystyle \frac{\delta Q}{\delta L}=[10(-2)][0.2K^{-0.5}+0.8L^{-0.5})^{(-2-1)}*[0.8*(-0.5)]L^{(\frac{-1}{2}-1)}=[(-20)*(-0.4)](0.2K^{-0.5} +0.8L^{-0.5})^{-3} *L^{\frac{-3}{2}}=8(0.2K^{-0.5}+0.8L^{-0.5})^{-3} *L^{\frac{-3}{2}}\)
\(\displaystyle \frac{\delta Q}{\delta K}=[10(-2)](0.2K^{-0.5} + 0.8L^{-0.5})^{(-2-1)}*[0.2*(-0.5)]K^{(\frac{-1}{2}-1)}\)
\(\displaystyle =[(-20)*(-0.1)](0.2K^{-0.5} +0.8L^{-0.5})^{-3}* K^{\frac{-3}{2}}=2(0.2K^{-0.5}+0.8^{-0.5})^{-3}K^{\frac{-3}{2}}\)
Is this all correct so far?
What do I do next?
Would anyone be able to guide me through the rest?
\(\displaystyle Q=10(0.2L^{-0.5} +0.8K^{-0.5})^{-2}\)
Here is my attempt so far:
\(\displaystyle \frac{\delta Q}{\delta L}=[10(-2)][0.2K^{-0.5}+0.8L^{-0.5})^{(-2-1)}*[0.8*(-0.5)]L^{(\frac{-1}{2}-1)}=[(-20)*(-0.4)](0.2K^{-0.5} +0.8L^{-0.5})^{-3} *L^{\frac{-3}{2}}=8(0.2K^{-0.5}+0.8L^{-0.5})^{-3} *L^{\frac{-3}{2}}\)
\(\displaystyle \frac{\delta Q}{\delta K}=[10(-2)](0.2K^{-0.5} + 0.8L^{-0.5})^{(-2-1)}*[0.2*(-0.5)]K^{(\frac{-1}{2}-1)}\)
\(\displaystyle =[(-20)*(-0.1)](0.2K^{-0.5} +0.8L^{-0.5})^{-3}* K^{\frac{-3}{2}}=2(0.2K^{-0.5}+0.8^{-0.5})^{-3}K^{\frac{-3}{2}}\)
Is this all correct so far?
What do I do next?
Would anyone be able to guide me through the rest?
Last edited: