MHB Mason's question via Facebook about solving a system of equations

AI Thread Summary
The discussion revolves around solving a system of equations involving three variables: x, y, and z. The equations are manipulated using techniques such as finding the least common multiple (LCM) of coefficients, multiplying equations to align them, and applying row operations to simplify the system. The final solution obtained through these methods is x = 5, y = 8, and z = -6. The conversation also suggests that representing the solution in matrix form and using Gaussian elimination could be beneficial for further analysis. The solution process highlights the effectiveness of systematic approaches in solving linear equations.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Solve the following system for $\displaystyle \begin{align*} x, y, z \end{align*}$:

$\displaystyle \begin{align*} 5\,x - 2\,y + z &= 3 \\ 3\,x + y + 3\,z &= 5 \\ 6\,x + y - 4\,z &= 62 \end{align*}$

The LCM of the $\displaystyle \begin{align*} x \end{align*}$ coefficients is 30, so multiplying the first equation by 6, the second by 10 and the third by 5 gives

$\displaystyle \begin{align*} 30\,x - 12\,y + 6\,z &= 18 \\ 30\,x + 10\,y + 30\,z &= 50 \\ 30\,x + 5\,y - 20\,z &= 310 \end{align*}$

Applying R2 - R1 to R2 and R3 - R1 to R3 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 22\,y + 24\,z &= 32 \\ 17\,y - 26\,z &= 292 \end{align*}$

Dividing the second equation by 2 gives

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 11\,y + 12\,z &= 16 \\ 17\,y - 26 \,z &= 292 \end{align*}$

The LCM of the y coefficients in rows 2 and 3 is 187, so multiplying the second equation by 17 and the third equation by 11 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 187\,y + 204\,z &= 272 \\ 187\,y - 286\,z &= 3\,212 \end{align*}$

Applying R3 - R2 to R2 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 187\,y + 204\,z &= 272 \\ - 490\,z &= 2\,940 \end{align*}$

Since $\displaystyle \begin{align*} -490\,z = 2\,940 \implies z = -6 \end{align*}$, then

$\displaystyle \begin{align*} 187\,y + 204 \, \left( -6 \right) &= 272 \\ 187\,y - 1\,224 &= 272 \\ 187\,y &= 1\,496 \\ y &= 8 \end{align*}$

and

$\displaystyle \begin{align*} 5\,x - 2\,\left( 8 \right) + \left( -6 \right) &= 3 \\ 5\,x - 22 &= 3 \\ 5\,x &= 25 \\ x &= 5 \end{align*}$

So the solution is $\displaystyle \begin{align*} \left( x , y , z \right) = \left( 5, 8, -6 \right) \end{align*}$.
 
Mathematics news on Phys.org
Prove It said:
The LCM of the $\displaystyle \begin{align*} x \end{align*}$ coefficients is 30, so multiplying the first equation by 6, the second by 10 and the third by 5 gives

$\displaystyle \begin{align*} 30\,x - 12\,y + 6\,z &= 18 \\ 30\,x + 10\,y + 30\,z &= 50 \\ 30\,x + 5\,y - 20\,z &= 310 \end{align*}$

Applying R2 - R1 to R2 and R3 - R1 to R3 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 22\,y + 24\,z &= 32 \\ 17\,y - 26\,z &= 292 \end{align*}$

Dividing the second equation by 2 gives

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 11\,y + 12\,z &= 16 \\ 17\,y - 26 \,z &= 292 \end{align*}$

The LCM of the y coefficients in rows 2 and 3 is 187, so multiplying the second equation by 17 and the third equation by 11 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 187\,y + 204\,z &= 272 \\ 187\,y - 286\,z &= 3\,212 \end{align*}$

Applying R3 - R2 to R2 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 187\,y + 204\,z &= 272 \\ - 490\,z &= 2\,940 \end{align*}$

Since $\displaystyle \begin{align*} -490\,z = 2\,940 \implies z = -6 \end{align*}$, then

$\displaystyle \begin{align*} 187\,y + 204 \, \left( -6 \right) &= 272 \\ 187\,y - 1\,224 &= 272 \\ 187\,y &= 1\,496 \\ y &= 8 \end{align*}$

and

$\displaystyle \begin{align*} 5\,x - 2\,\left( 8 \right) + \left( -6 \right) &= 3 \\ 5\,x - 22 &= 3 \\ 5\,x &= 25 \\ x &= 5 \end{align*}$

So the solution is $\displaystyle \begin{align*} \left( x , y , z \right) = \left( 5, 8, -6 \right) \end{align*}$.
Correct. The next step would be to write it in form of matrices. 'Gaussian elimination' would be a suitable search key.
 
  • Like
Likes Astronuc and Greg Bernhardt
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
11K
Replies
1
Views
11K
Replies
4
Views
11K
Replies
1
Views
10K
Replies
1
Views
10K
Replies
4
Views
11K
Replies
1
Views
10K
Back
Top