I Mass Dimension of Fields (Momentum space)

  • I
  • Thread starter Thread starter thatboi
  • Start date Start date
thatboi
Messages
130
Reaction score
20
Hi all,
We know from requiring the action be invariant that the mass-dimension of a scalar field ##\phi## is ##\frac{d-2}{2}## where ##d## is the space-time dimension. But what is the mass-dimension of ##\phi(p)##? I ask because free-theory 2-pt correlation function (in Euclidean space) is written as ##\langle\phi(p)\phi(q)\rangle = (2\pi)^{d}\delta^{d}(p+q)\frac{1}{p^{2}+m^{2}}##. The dirac delta seems to contribute a mass dimension ##-d## and then the fractional component contributes another mass-dimension of ##-2##? I'm not sure if this makes sense.

Thanks.
 
Physics news on Phys.org
Indeed, and therefore …

Another way of deriving it is to look at the action expressed in the momentum variables or just the definition of ##\phi(p)## in terms of ##\phi(x)##.
 
  • Like
Likes topsquark and vanhees71
Orodruin said:
Indeed, and therefore …

Another way of deriving it is to look at the action expressed in the momentum variables or just the definition of ##\phi(p)## in terms of ##\phi(x)##.
Ah, so the mass dimension is ##\frac{-d-2}{2}##. The fourier transform is indeed significantly simpler to see this.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top