MHB Massaad's question via email about Laplace Transforms

AI Thread Summary
The discussion focuses on solving the initial value problem involving the second-order differential equation using Laplace Transforms. The transformed equation leads to a solution in the Laplace domain, which is then simplified using partial fraction decomposition. The inverse Laplace Transform is applied to find the time-domain solution, resulting in a piecewise function that incorporates a Heaviside step function. The final solution is expressed as a combination of exponential terms and the Heaviside function, indicating behavior changes at t = 6. The response concludes with encouragement for further questions regarding Laplace Transforms.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
$\displaystyle y\left( t \right)$ satisfies the initial value problem:

$\displaystyle \frac{\mathrm{d}^2y}{\mathrm{d}x^2} - 5\,\frac{\mathrm{d}y}{\mathrm{d}t} - 6\,y = -126\,H\left( t - 6 \right) , \quad y\left( 0 \right) = -5, \,\, y'\left( 0 \right) = 5$

Find the solution to the initial value problem using Laplace Transforms.

Taking the Laplace Transform of the equation gives

$\displaystyle \begin{align*} s^2\,Y\left( s \right) - s\,y\left( 0 \right) - y'\left( 0 \right) - 5\left[ s\,Y\left( s \right) - y\left( 0 \right) \right] - 6\,Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
s^2\,Y\left( s \right) - s\left( -5 \right) - 5 - 5 \left[ s\,Y\left( s \right) - \left( -5 \right) \right] - 6\,Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
s^2\,Y\left( s \right) + 5\,s - 5 - 5\,s\,Y\left( s \right) - 25 - 6\,Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
\left( s^2 - 5\,s - 6 \right) Y\left( s \right) + 5\,s - 30 &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
\left( s - 6 \right) \left( s + 1 \right) Y\left( s \right) + 5 \left( s - 6 \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s} \\
\left( s + 1 \right) Y\left( s \right) + 5 &= -\frac{126\,\mathrm{e}^{-6\,s}}{s\left( s - 6 \right) } \\
\left( s + 1 \right) Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s\left( s - 6 \right) } - 5 \\
Y\left( s \right) &= -\frac{126\,\mathrm{e}^{-6\,s}}{s\left( s - 6 \right) \left( s + 1 \right) } - \frac{5}{s + 1}\end{align*}$

The second term is easy to find the inverse transform of: $\displaystyle \mathcal{L}^{-1}\,\left\{ \frac{5}{s + 1} \right\} = 5\,\mathrm{e}^{-t} $.

For the first term, due to the exponential function, it suggests a second shift: $\displaystyle \mathcal{L}\,\left\{ f\left( t - a \right) \,H\left( t - a \right) \right\} = \mathrm{e}^{-a\,s}\,F\left( s \right) $.

So in this case, we have $\displaystyle F\left( s \right) = -\frac{126}{s\left( s - 6 \right) \left( s + 1 \right) } $.

To find $\displaystyle f\left( t \right) $ we will need partial fractions:

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B}{s - 6} + \frac{C}{s + 1} &\equiv \frac{-126}{s\left( s - 6 \right) \left( s + 1 \right) } \\
A \left( s - 6 \right) \left( s + 1 \right) + B\,s\left( s + 1 \right) + C\,s \left( s - 6 \right) &\equiv -126 \end{align*} $

Let $\displaystyle s = 0 \implies -6\,A = -126 \implies A = 21$

Let $\displaystyle s = 6 \implies 42\,B = -126 \implies B = -3$

Let $\displaystyle s = -1 \implies 7\,C = -126 \implies C = -18 $

So

$\displaystyle \begin{align*} F\left( s \right) &= 21 \left( \frac{1}{s} \right) - 3 \left( \frac{1}{s - 6} \right) - 18 \left( \frac{1}{s + 1} \right) \\
f\left( t \right) &= 21 - 3\,\mathrm{e}^{6\,t} - 18\,\mathrm{e}^{-t} \end{align*}$

Thus $\displaystyle \mathcal{L}^{-1}\,\left\{ -\frac{126\,\mathrm{e}^{-6\,s}}{s\left( s - 6 \right) \left( s + 1 \right) } \right\} = \left[ 21 - 3\,\mathrm{e}^{6\,\left( t - 6 \right) } - 18\,\mathrm{e}^{-\left( t - 6 \right) } \right]\,H\left( t - 6 \right) $ by the second shift theorem.

So now we can finally write the solution to the DE:

$\displaystyle y\left( t \right) = \left[ 21 - 3\,\mathrm{e}^{6\,\left( t - 6 \right) } - 18\,\mathrm{e}^{-\left( t - 6 \right) } \right] \, H\left( t - 6 \right) - 5\,\mathrm{e}^{-t}$
 
Mathematics news on Phys.org


I hope this helps answer your question, Massaad. Let me know if you have any further questions or if anything is unclear. Keep up the good work with Laplace Transforms!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top