- #1
Satvik Pandey
- 591
- 12
Homework Statement
A particle is been acted by a central force exerted by a sphere of mass 'M' at a distance 'xo' initially from the particle (of same mass). At t=0 the particle has velocity Vt perpendicular to the line joining the particle and the center of the sphere. Find the time at which it collides with the sphere.
It is given that ##x_{0}=1m## and ##V_{t}=1m/s##
Homework Equations
##F=\frac { k{ M }^{ 2 } }{ { R }^{ 2 } } ##
Also it is given that ##4K=1##
The Attempt at a Solution
I first converted the two body problem to a single body problem using reduced mass concept.
Let a reduced mass be placed at distance 'xo' from point (let it be at origin) exerting Force = ##F=\frac { k{ M }^{ 2 } }{ { x }_{ o }^{ 2 } } ##
At any general position let the separation between induced mass and the origin be x. Let the radial and tangential velocity at that instant be ##{ V }_{ r }## and ##{ V }_{ T }^{ ' }##
From conservation of Angular momentum.
##\mu { x }_{ o }{ V }_{ T }\quad =\quad \mu x{ V }_{ T }^{ ' }##
##{ V }_{ T }^{ ' }\quad =\quad \frac { { x }_{ o }{ V }_{ T } }{ x } ##......1
Now from Newton's second law.
##\frac { K{ M }^{ 2 } }{ { x }_{ }^{ 2 } } \quad -\quad \frac { \mu ({ V }_{ T }^{ ' })^{ 2 } }{ x } \quad =\quad \mu { a }_{ r }##
##\frac { K{ M }^{ 2 } }{ { \mu x }_{ }^{ 2 } } \quad -\quad \frac { ({ V }_{ T }^{ ' })^{ 2 } }{ x } \quad =\quad { a }_{ r }##
##\frac { K{ M }^{ 2 } }{ { \mu x }_{ }^{ 2 } } \quad -\quad \frac { ({ V }_{ T }^{ })^{ 2 }{ x }_{ o }^{ 2 } }{ { x }^{ 3 } } \quad =\quad -\frac { { V }_{ r }d{ V }_{ r } }{ dx } ##
##-\frac { K{ M }^{ 2 } }{ { \mu x }_{ }^{ 2 } } dx\quad +\quad \frac { ({ V }t)^{ 2 }{ x }_{ o }^{ 2 } }{ { x }^{ 3 } } dx\quad =\quad -{ V }_{ r }d{ V }_{ r }##
Integrating
##\frac { K{ M }^{ 2 } }{ { \mu x } } \quad -\quad \frac { { V }t^{ 2 }{ x }_{ o }^{ 2 } }{ { 2x }^{ 2 } } \quad =\quad \frac { { V }_{ r }^{ 2 } }{ 2 } +C##
at, ##x\quad =\quad { x }_{ o }## , ##{ V }_{ r }\quad =\quad 0##
so, ##C\quad =\quad \frac { K{ M }^{ 2 } }{ \mu { x }_{ o } } -\quad \frac { {V_ { t }}^{ 2 } }{ 2 } ##
on putting 'C'
##\frac { 2K{ M }^{ 2 } }{ \mu } (\frac { 1 }{ x } -\frac { 1 }{ { x }_{ o } } )-\quad { V }_{ t }^{ 2 }\quad (\frac { { x }_{ o }^{ 2 } }{ x } -1)\quad =\quad { V }_{ r }^{ 2 }##
As ## \mu=M/2## so
##4K{ M }^{ 2 }\quad (\frac { 1 }{ x } -\frac { 1 }{ { x }_{ o } } )-\quad { V }_{ t }^{ 2 }\quad (\frac { { x }_{ o }^{ 2 } }{ x } -1)\quad =\quad { V }_{ r }^{ 2 }##
##\frac { 1 }{ x } -\frac { 1 }{ { x }_{ o } } -\quad (\frac { { x }_{ o }^{ 2 } }{ { x }^{ 2 } } -1)\quad =\quad { V }_{ r }^{ 2 }##
##\frac { 1 }{ x } -\frac { 1 }{ { x }_{ o } } -\frac { { x }_{ o }^{ 2 } }{ { x }^{ 2 } } +1\quad =\quad { V }_{ r }^{ 2 }##
On substituting the value of ##x_{0}## I got
##\frac { 1 }{ x } -1-\frac { 1 }{ { x }^{ 2 } } +1\quad =\quad { V }_{ r }^{ 2 }##
##\sqrt { \frac { 1 }{ x } -\frac { 1 }{ { x }^{ 2 } } } =\quad \frac { -dx }{ dt } ##
##\sqrt { \frac { x-1 }{ { x }^{ 2 } } } =\quad \frac { -dx }{ dt } ##
##\int _{ 0 }^{ t }{ -dt\quad =\quad \int _{ { x }_{ 0 } }^{ R }{ \frac { xdx }{ \sqrt { x-1 } } } } ##
I don't know if I am right till here or not . It would be nice if anyone could help.
Thank You!
Attachments
Last edited: