- #1
cjolley
- 3
- 0
Hi everybody...
I've been working through N.G. Van Kampen's "Stochastic Processes in Physics and Chemistry" and have run into something that has got me sort of stumped. He defines the Ornstein-Uhlenbeck process (a stationary, Gaussian, Markovian random process) in terms of the transition probability between two values [itex]y_{1}[/itex] and [itex]y_{2}[/itex] separated by a time t:
[itex]T_{t}(y_{2}|y_{1}) = (2π(1-e^{-2t})^{1/2}\exp(\frac{(y_{2}-y_{1}e^{-t})^{2}}{2(1-e^{-2t})})[/itex]
and the probability distribution
[itex]P_{1}(y_{1}) = (2π)^{-1/2}e^{-y_{1}^{2}/2}[/itex]
(This is pg. 83 if you have the book.)
A little bit later, he defines the master equation by expanding T[itex]_{t}(y_{2}|y_{1})[/itex] in powers of t and defining the coefficient of the linear term as [itex]W(y_{2}|y_{1})[/itex], the transition probability per unit time (pg. 96 if you have the book).
The thing that's got me stuck here is that, as t→0, T[itex]_{t}(y_{2}|y_{1})[/itex]→δ[itex](y_{2}-y_{1})[/itex], since T[itex]_{t}(y_{2}|y_{1})[/itex] is a Gaussian. I can't seem to come up with a reasonable way to expand this in terms of small t, which makes it difficult to define the master equation.
So... does anyone know how the Ornstein-Uhlenbeck process is formulated as a master equation? Any ideas would be greatly appreciated.
--craig
I've been working through N.G. Van Kampen's "Stochastic Processes in Physics and Chemistry" and have run into something that has got me sort of stumped. He defines the Ornstein-Uhlenbeck process (a stationary, Gaussian, Markovian random process) in terms of the transition probability between two values [itex]y_{1}[/itex] and [itex]y_{2}[/itex] separated by a time t:
[itex]T_{t}(y_{2}|y_{1}) = (2π(1-e^{-2t})^{1/2}\exp(\frac{(y_{2}-y_{1}e^{-t})^{2}}{2(1-e^{-2t})})[/itex]
and the probability distribution
[itex]P_{1}(y_{1}) = (2π)^{-1/2}e^{-y_{1}^{2}/2}[/itex]
(This is pg. 83 if you have the book.)
A little bit later, he defines the master equation by expanding T[itex]_{t}(y_{2}|y_{1})[/itex] in powers of t and defining the coefficient of the linear term as [itex]W(y_{2}|y_{1})[/itex], the transition probability per unit time (pg. 96 if you have the book).
The thing that's got me stuck here is that, as t→0, T[itex]_{t}(y_{2}|y_{1})[/itex]→δ[itex](y_{2}-y_{1})[/itex], since T[itex]_{t}(y_{2}|y_{1})[/itex] is a Gaussian. I can't seem to come up with a reasonable way to expand this in terms of small t, which makes it difficult to define the master equation.
So... does anyone know how the Ornstein-Uhlenbeck process is formulated as a master equation? Any ideas would be greatly appreciated.
--craig