- #1
gcarson1
- 7
- 0
Hi all, been struggling with my course material regarding Induction. My prof is really not great at explaining this proof method. I don't know what the learning curve or expectations here are like but I'm really struggling with this conceptually.
Any assistance with these problems would be much appreciated:
1. Prove that 3 divides n^3+2n whenever n is a positive integer.
I know I can't use a summation progression so how do I solve this induction?
(n+1)^3+2(n+1) is the next step but I get lost when I try to factor out the (n+1)^3
This is as far as I can take this one.
2. Prove that 1x1! + 2x2! + ... + nxn! = (n+1)!-1
Let P(n) be 1x1!+…+nxn!=(n+1)!-1
Basis Step: 1 x 1! = (1+1)!+1
1 = 1
Therefore our basis step is true.
Inductive Step: We know that P(n) is true thus we must prove P(n+1)
1x1!+…+nxn!+((n+1)(n+1)!)=[ 1x1!+…+nxn! ] + ((n+1)(n+1)!)
1x1!+…+nxn!+((n+1)(n+1)!)= [(n+1)!-1]+((n+1)(n+1)!)
1x1!+…+nxn!+((n+1)(n+1)!)= ((n+1)(n+1)!)
I believe this one is solved however I'm not sure if I must take it further?
Any assistance with these problems would be much appreciated:
1. Prove that 3 divides n^3+2n whenever n is a positive integer.
I know I can't use a summation progression so how do I solve this induction?
(n+1)^3+2(n+1) is the next step but I get lost when I try to factor out the (n+1)^3
This is as far as I can take this one.
2. Prove that 1x1! + 2x2! + ... + nxn! = (n+1)!-1
Let P(n) be 1x1!+…+nxn!=(n+1)!-1
Basis Step: 1 x 1! = (1+1)!+1
1 = 1
Therefore our basis step is true.
Inductive Step: We know that P(n) is true thus we must prove P(n+1)
1x1!+…+nxn!+((n+1)(n+1)!)=[ 1x1!+…+nxn! ] + ((n+1)(n+1)!)
1x1!+…+nxn!+((n+1)(n+1)!)= [(n+1)!-1]+((n+1)(n+1)!)
1x1!+…+nxn!+((n+1)(n+1)!)= ((n+1)(n+1)!)
I believe this one is solved however I'm not sure if I must take it further?
Last edited: