MHB Math Help Forum: Solving Complex Integration Problem

AI Thread Summary
To solve the complex integration problem posed by Samantha128, the goal is to show that the limit of the cyclic integral of the function f(z) approaches zero as R approaches infinity. The function f(z) has discontinuities at z = ±2i and z = -1 ± i, which are critical for applying the Estimation lemma. By estimating the integral and using the Squeeze theorem, it is demonstrated that the limit of the integral indeed equals zero. This approach provides a clear method for tackling similar problems in preparation for the final exam. Further clarification is offered for any additional questions.
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Samantha128's question from Math Help Forum,

Hi in my textbook there is the following question and my teacher said one similar is likely to be in the final exam. Can anyone help?

let f(z) = (z^2 + 2z -5)/((z^2+4)(z^2+2z+2)) If C is the circle |z|=R show that lim (from R to infinity) of the cyclic integral f(z) dz=0

I don't really know where to start

Hi Samantha128,

I hope you want to show, \(\displaystyle\lim_{R\rightarrow \infty}\oint_{c}f(z)\,dz=0\). For this let us first find, \(\displaystyle\oint_{c}f(z)\,dz\)

\[f(z) = \frac{z^2 + 2z -5}{(z^2+4)(z^2+2z+2)}\]

The points where the denominator become zero are, \(z=\pm 2i\mbox{ and }z=-1\pm i\). These are the points of discontinuities of the function \(f\). For \(R\neq 2, \sqrt{2}\) you can use the Estimation lemma. Then you will get,

\[\left|\oint_{c}f(z)\,dz\right|\leq\frac{2\pi R(R^2 + 2R -5)}{(R^2+4)(R^2+2R+2)}\]

By the Squeeze theorem,

\[\lim_{R\rightarrow \infty}\left|\oint_{c}f(z)\,dz\right|=0\]

\[\Rightarrow\lim_{R\rightarrow \infty}\oint_{c}f(z)\,dz=0\]
 
Mathematics news on Phys.org


I hope this helps. Let me know if you have any further questions or if you need clarification on any steps. Good luck on your exam!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top