- #1
crazybird
- 16
- 0
I have a pde set as following:
parameters: γ, ω, α, β, c, η
variables: z,t; x,y
want: S = S(z,t;x,y)
A = A(z,t)
∂S/∂t = -γ*S - i ω*A*exp{-i*[(-θ-α*t)*x+β*t*y]}
[∂/∂t + (1/c)*∂/∂t] A = -i η*∫∫dxdy S*exp{i*[(-θ-α*t)*x+β*t*y]}
The integral range is angle:(0,2Pi), radius: (0,R)
How to solve this equation with NDSolve? I tried the following, which obviously does not work:
Anyone know how to do it easily?
parameters: γ, ω, α, β, c, η
variables: z,t; x,y
want: S = S(z,t;x,y)
A = A(z,t)
∂S/∂t = -γ*S - i ω*A*exp{-i*[(-θ-α*t)*x+β*t*y]}
[∂/∂t + (1/c)*∂/∂t] A = -i η*∫∫dxdy S*exp{i*[(-θ-α*t)*x+β*t*y]}
The integral range is angle:(0,2Pi), radius: (0,R)
How to solve this equation with NDSolve? I tried the following, which obviously does not work:
Code:
t1 = 500;(*ns, duration=5*10^-7 s*)
\[Mu] = -250;(*ns, central=-2.5*10^-7 s*)
\[Sigma] = 100;(*ns, width=10^-7 s*)
L = 1;
R = 0.2;
c = c = 29.979;
\[Gamma] = 1/100000;
\[Omega] = 1.329489268210057*10^-8;
\[Eta] = 2.0034565952485216*10^9;
\[Theta] = 1022.4;
\[Alpha] = 4.09;
\[Beta] = 0;
sol = NDSolve[{\!\(
\*SubscriptBox[\(\[PartialD]\), \(t\)]\(sS[z, t, x]\)\) == -\[Gamma]*
sS[z, t, x] -
I \[Omega]* E^(-I ((-\[Theta] - \[Alpha] t)*x))*aS[z, t, x], (\!\(
\*SubscriptBox[\(\[PartialD]\), \(z\)]\(aS[z, t, x]\)\) + 1/c \!\(
\*SubscriptBox[\(\[PartialD]\), \(t\)]\(aS[z, t,
x]\)\)) == -I \[Eta]*
NIntegrate[
E^(I ((-\[Theta] - \[Alpha] t)*x))*sS[z, t, x], {y, -R,
R}, {x, -Sqrt[R^2 - y^2], Sqrt[R^2 - y^2]}] ,
sS[z, -t1, x] == 0,
aS[z, -t1, x] ==
1/(Sqrt[2 Pi] \[Sigma]) E^(-((-t1 - \[Mu])^2/(2 \[Sigma]^2))),
aS[0, t, x] ==
1/(Sqrt[2 Pi] \[Sigma]) E^(-((t - \[Mu])^2/(2 \[Sigma]^2)))}, {sS,
aS,x}, {z, 0, L}, {t, -t1, 0}, {x, -R, R}, MaxSteps -> Infinity,
StartingStepSize -> 0.01, PrecisionGoal -> 1000,
MaxStepSize -> 0.01]
Anyone know how to do it easily?
Last edited: