- #1
adnan jahan
- 96
- 0
mathematica not supporting graphs,,,code is as
Dear Fellow I was trying to make graph using mathematica but because of imaginary appearing mathematica is not supporting don't now how to evaluate the graph,,where code for mathematica is as
rho = 1.74*10^(3);
lambda = 9.4*10^(11);
mue = 4.0*10^(11);
T0 = 293;
k = 0.6*10^(-2);
K = 1*10^(11);
K1 = 0.3*10^(-3);
CE = 383.1;
gamma = 0.779*10^(-8);
gamma1 = 0.1*10^(-5);
gamma11 = 0.5*10^(-3);
j = 0.2*10^(-21);
alpha0 = 0.779*10^(-4);
lambda0 = 0.5*10^(11);
lambda1 = 0.2*10^(11);
umega = 2;
t = 0.1;
aphat = 1.78*10^(-5);
f = 0.5;
p = 10;
b = 2;
w0 = -2;
xi = 1;
z = 0.1;
w = w0 + xi;
c2 = mue/rho;
c3 = (2*alpha0)/(3*rho*j);
c4 = (2*lambda1)/(9*rho*j);
c5 = (2*lambda0)/(9*rho*j);
c6 = (2*gamma11)/(9*rho*j);
w1 = (rho*CE*c2)/K1;
epsilon1 = ((gamma1^2)*T0)/(rho^2*CE*c2);
epsilon2 = K1/(rho*CE*c2);
epsilon3 = (K*w1)/(rho*CE*c2);
epsilon4 = (gamma1*gamma11*T0)/(rho^2*CE*w1*c2);
epsilon = epsilon2 + epsilon3*w;
c1 = (lambda + 2*mue + k)/rho;
a0 = (c2)/(c1);
a1 = lambda0/(lambda + 2*mue + k);
a2 = (rho*c2)/(mue + k);
a3 = k/(mue + k);
a4 = (k*c2)/(gamma*w1^2);
a5 = (rho*j*c2)/gamma;
a6 = (c3)/(c2);
a7 = (c4)/(w1^2);
a8 = (c5)/(w1^2);
a9 = (2*gamma11*c2)/(9*gamma1*j*w1^2);
A1 = b^2 + a0*(w^2 - umega^2);
A2 = 2*umega*a0*w;
A3 = b^2 + a2*(w^2 - umega^2);
A4 = 2*umega*a2*w;
A5 = b^2 + 2*a4 + a5*w^2;
A6 = b^2*a6 + a7 + w^2;
g1 = epsilon4*w - a1*epsilon1*w^2;
g2 = -epsilon4*w*A1 + a1*epsilon1*w^2*b^2;
g3 = a1*epsilon*b^2 + a1*w^2 + a0*epsilon4*w;
g4 = A2*epsilon4*w;
g5 = A3 + A5 - a3*a4;
g6 = A3*A5 - a3*a4*b^2;
g7 = g2 - g1*g5;
g8 = -g2*g5 + g1*g6 + g4*A4;
g9 = g2*g6 - g4*A4*A5;
g10 = -g3 - a1*epsilon*g5;
g11 = g3*g5 + a1*epsilon*g6;
g12 = g3*g6;
g13 = a6*(epsilon*b^2 + w^2) + A6*epsilon;
g14 = epsilon4*a9*w + A6*(epsilon*b^2 + w^2);
g15 = epsilon1*a6*w^2*b^2 + A6*epsilon1*w^2 - a8*epsilon4*w;
g16 = epsilon4*a8*w*b^2 - epsilon1*w^2*A6*b^2;
g17 = epsilon*(a6*g1 + a1*epsilon1*w^2*a6);
g18 = -a6*(epsilon*g7 + epsilon1*w^2*g10) + g13*g1 + a1*epsilon*g15;
g19 = a6*(epsilon*g8 + epsilon1*w^2*g11) - g13*g7 + g14*g1 -
a1*epsilon*g16 - g10*g15;
g20 = -a6*epsilon*g9 + g13*g8 - g14*g7 + g10*g16 + g11*g15 +
g12*a6*epsilon1*w^2;
g21 = -g13*g9 + g14*g8 - g11*g16 + g12*g15;
g22 = -g14*g9 - g12*g16;
a10 = lambda_ 0/(rho*c2);
a11 = c1/c2;
a12 = lambda/(rho*c2);
a13 = (mue + k)/(rho*c2);
a14 = (k)/(rho*c2);
a15 = (gamma*w1^2)/(rho*c2^4);
a16 = (alpha_ 0*w1)/(rho*c2^(3/2));
k1 = +0.0024
k2 = +0.0018 - 0.0015*I
k3 = 0.0018 + 0.0015*I
k4 = 0.0003 + 0.0019*I
k5 = 0.0003 - 0.0019*I
H21 = (A4*(k1^2 - A5))/(k1^4 - k1^2*g5 + g6);
H22 = (A4*(k2^2 - A5))/(k2^4 - k2^2*g5 + g6);
H23 = (A4*(k3^2 - A5))/(k3^4 - k3^2*g5 + g6);
H24 = (A4*(k4^2 - A5))/(k4^4 - k4^2*g5 + g6);
H25 = (A4*(k5^2 - A5))/(k5^4 - k5^2*g5 + g6);
H11 = (k1^4*a6*epsilon1*w^2 - k1^2*g15 - g16)/(k1^4*a6*epsilon -
k1^2*g13 + g14);
H12 = (k2^4*a6*epsilon1*w^2 - k2^2*g15 - g16)/(k2^4*a6*epsilon -
k2^2*g13 + g14);
H13 = (k3^4*a6*epsilon1*w^2 - k3^2*g15 - g16)/(k3^4*a6*epsilon -
k3^2*g13 + g14);
H14 = (k4^4*a6*epsilon1*w^2 - k4^2*g15 - g16)/(k4^4*a6*epsilon -
k4^2*g13 + g14);
H15 = (k5^4*a6*epsilon1*w^2 - k5^2*g15 - g16)/(k5^4*a6*epsilon -
k5^2*g13 + g14);
H31 = -((a4*A4*(k1^2 - b^2))/(k1^4 - k1^2*g5 + g6));
H32 = -((a4*A4*(k2^2 - b^2))/(k2^4 - k2^2*g5 + g6));
H33 = -((a4*A4*(k3^2 - b^2))/(k3^4 - k3^2*g5 + g6));
H34 = -((a4*A4*(k4^2 - b^2))/(k4^4 - k4^2*g5 + g6));
H35 = -((a4*A4*(k5^2 - b^2))/(k5^4 - k5^2*g5 + g6));
H41 = (a8*(k1^6 - b^2) - a9*H11)/(a6*k1^2 - A6);
H42 = (a8*(k2^6 - b^2) - a9*H12)/(a6*k2^2 - A6);
H43 = (a8*(k3^6 - b^2) - a9*H13)/(a6*k3^2 - A6);
H44 = (a8*(k4^6 - b^2) - a9*H14)/(a6*k4^2 - A6);
H45 = (a8*(k5^6 - b^2) - a9*H15)/(a6*k5^2 - A6);
H61 = a10*H41 - k1*a11*(-k1 + I*b*H21) + I*b*a12*(I*b + k1*H21) - H11;
H62 = a10*H42 - k2*a11*(-k2 + I*b*H22) + I*b*a12*(I*b + k2*H22) - H12;
H63 = a10*H43 - k3*a11*(-k3 + I*b*H23) + I*b*a12*(I*b + k3*H23) - H13;
H64 = a10*H44 - k4*a11*(-k4 + I*b*H24) + I*b*a12*(I*b + k4*H24) - H14;
H65 = a10*H45 - k5*a11*(-k5 + I*b*H25) + I*b*a12*(I*b + k5*H25) - H15;
H71 = I*b*(I*b*H21 - k1) - k1*a13*(I*b + H21*k1) + a14*H31;
H72 = I*b*(I*b*H22 - k2) - k2*a13*(I*b + H22*k2) + a14*H32;
H73 = I*b*(I*b*H23 - k3) - k3*a13*(I*b + H21*k3) + a14*H33;
H74 = I*b*(I*b*H24 - k4) - k4*a13*(I*b + H24*k4) + a14*H34;
H75 = I*b*(I*b*H25 - k5) - k5*a13*(I*b + H25*k5) + a14*H35;
M1 = 8.9842 10^045 + 6.2942 10^(046) I
M2 = 6.9622 10^046 - 5.3668 10^(046) I
M3 = 2.1724 10^046 + 3.7184 10^(046) I
M4 = -9.1931*10^046 + 7.5101 10^(046) I
M5 = -8.3987*10^045 - 1.2156 10^(047) I
U1 = (-k1 + I*b*H21)*M1*e^(-k1*x) + (-k2 + I*b*H22)*M2*
e^(-k2*x) + (-k3 + I*b*H23)*M3*e^(-k3*x) + (-k4 + I*b*H24)*M4*
e^(-k4*x) + (-k5 + I*b*H25)*M5*e^(-k5*x);
U = U1*e^(w*t + I*b*z);
Plot[Re, {x, 0, 5}],
any support in which I can find graph will be appreciated
Dear Fellow I was trying to make graph using mathematica but because of imaginary appearing mathematica is not supporting don't now how to evaluate the graph,,where code for mathematica is as
rho = 1.74*10^(3);
lambda = 9.4*10^(11);
mue = 4.0*10^(11);
T0 = 293;
k = 0.6*10^(-2);
K = 1*10^(11);
K1 = 0.3*10^(-3);
CE = 383.1;
gamma = 0.779*10^(-8);
gamma1 = 0.1*10^(-5);
gamma11 = 0.5*10^(-3);
j = 0.2*10^(-21);
alpha0 = 0.779*10^(-4);
lambda0 = 0.5*10^(11);
lambda1 = 0.2*10^(11);
umega = 2;
t = 0.1;
aphat = 1.78*10^(-5);
f = 0.5;
p = 10;
b = 2;
w0 = -2;
xi = 1;
z = 0.1;
w = w0 + xi;
c2 = mue/rho;
c3 = (2*alpha0)/(3*rho*j);
c4 = (2*lambda1)/(9*rho*j);
c5 = (2*lambda0)/(9*rho*j);
c6 = (2*gamma11)/(9*rho*j);
w1 = (rho*CE*c2)/K1;
epsilon1 = ((gamma1^2)*T0)/(rho^2*CE*c2);
epsilon2 = K1/(rho*CE*c2);
epsilon3 = (K*w1)/(rho*CE*c2);
epsilon4 = (gamma1*gamma11*T0)/(rho^2*CE*w1*c2);
epsilon = epsilon2 + epsilon3*w;
c1 = (lambda + 2*mue + k)/rho;
a0 = (c2)/(c1);
a1 = lambda0/(lambda + 2*mue + k);
a2 = (rho*c2)/(mue + k);
a3 = k/(mue + k);
a4 = (k*c2)/(gamma*w1^2);
a5 = (rho*j*c2)/gamma;
a6 = (c3)/(c2);
a7 = (c4)/(w1^2);
a8 = (c5)/(w1^2);
a9 = (2*gamma11*c2)/(9*gamma1*j*w1^2);
A1 = b^2 + a0*(w^2 - umega^2);
A2 = 2*umega*a0*w;
A3 = b^2 + a2*(w^2 - umega^2);
A4 = 2*umega*a2*w;
A5 = b^2 + 2*a4 + a5*w^2;
A6 = b^2*a6 + a7 + w^2;
g1 = epsilon4*w - a1*epsilon1*w^2;
g2 = -epsilon4*w*A1 + a1*epsilon1*w^2*b^2;
g3 = a1*epsilon*b^2 + a1*w^2 + a0*epsilon4*w;
g4 = A2*epsilon4*w;
g5 = A3 + A5 - a3*a4;
g6 = A3*A5 - a3*a4*b^2;
g7 = g2 - g1*g5;
g8 = -g2*g5 + g1*g6 + g4*A4;
g9 = g2*g6 - g4*A4*A5;
g10 = -g3 - a1*epsilon*g5;
g11 = g3*g5 + a1*epsilon*g6;
g12 = g3*g6;
g13 = a6*(epsilon*b^2 + w^2) + A6*epsilon;
g14 = epsilon4*a9*w + A6*(epsilon*b^2 + w^2);
g15 = epsilon1*a6*w^2*b^2 + A6*epsilon1*w^2 - a8*epsilon4*w;
g16 = epsilon4*a8*w*b^2 - epsilon1*w^2*A6*b^2;
g17 = epsilon*(a6*g1 + a1*epsilon1*w^2*a6);
g18 = -a6*(epsilon*g7 + epsilon1*w^2*g10) + g13*g1 + a1*epsilon*g15;
g19 = a6*(epsilon*g8 + epsilon1*w^2*g11) - g13*g7 + g14*g1 -
a1*epsilon*g16 - g10*g15;
g20 = -a6*epsilon*g9 + g13*g8 - g14*g7 + g10*g16 + g11*g15 +
g12*a6*epsilon1*w^2;
g21 = -g13*g9 + g14*g8 - g11*g16 + g12*g15;
g22 = -g14*g9 - g12*g16;
a10 = lambda_ 0/(rho*c2);
a11 = c1/c2;
a12 = lambda/(rho*c2);
a13 = (mue + k)/(rho*c2);
a14 = (k)/(rho*c2);
a15 = (gamma*w1^2)/(rho*c2^4);
a16 = (alpha_ 0*w1)/(rho*c2^(3/2));
k1 = +0.0024
k2 = +0.0018 - 0.0015*I
k3 = 0.0018 + 0.0015*I
k4 = 0.0003 + 0.0019*I
k5 = 0.0003 - 0.0019*I
H21 = (A4*(k1^2 - A5))/(k1^4 - k1^2*g5 + g6);
H22 = (A4*(k2^2 - A5))/(k2^4 - k2^2*g5 + g6);
H23 = (A4*(k3^2 - A5))/(k3^4 - k3^2*g5 + g6);
H24 = (A4*(k4^2 - A5))/(k4^4 - k4^2*g5 + g6);
H25 = (A4*(k5^2 - A5))/(k5^4 - k5^2*g5 + g6);
H11 = (k1^4*a6*epsilon1*w^2 - k1^2*g15 - g16)/(k1^4*a6*epsilon -
k1^2*g13 + g14);
H12 = (k2^4*a6*epsilon1*w^2 - k2^2*g15 - g16)/(k2^4*a6*epsilon -
k2^2*g13 + g14);
H13 = (k3^4*a6*epsilon1*w^2 - k3^2*g15 - g16)/(k3^4*a6*epsilon -
k3^2*g13 + g14);
H14 = (k4^4*a6*epsilon1*w^2 - k4^2*g15 - g16)/(k4^4*a6*epsilon -
k4^2*g13 + g14);
H15 = (k5^4*a6*epsilon1*w^2 - k5^2*g15 - g16)/(k5^4*a6*epsilon -
k5^2*g13 + g14);
H31 = -((a4*A4*(k1^2 - b^2))/(k1^4 - k1^2*g5 + g6));
H32 = -((a4*A4*(k2^2 - b^2))/(k2^4 - k2^2*g5 + g6));
H33 = -((a4*A4*(k3^2 - b^2))/(k3^4 - k3^2*g5 + g6));
H34 = -((a4*A4*(k4^2 - b^2))/(k4^4 - k4^2*g5 + g6));
H35 = -((a4*A4*(k5^2 - b^2))/(k5^4 - k5^2*g5 + g6));
H41 = (a8*(k1^6 - b^2) - a9*H11)/(a6*k1^2 - A6);
H42 = (a8*(k2^6 - b^2) - a9*H12)/(a6*k2^2 - A6);
H43 = (a8*(k3^6 - b^2) - a9*H13)/(a6*k3^2 - A6);
H44 = (a8*(k4^6 - b^2) - a9*H14)/(a6*k4^2 - A6);
H45 = (a8*(k5^6 - b^2) - a9*H15)/(a6*k5^2 - A6);
H61 = a10*H41 - k1*a11*(-k1 + I*b*H21) + I*b*a12*(I*b + k1*H21) - H11;
H62 = a10*H42 - k2*a11*(-k2 + I*b*H22) + I*b*a12*(I*b + k2*H22) - H12;
H63 = a10*H43 - k3*a11*(-k3 + I*b*H23) + I*b*a12*(I*b + k3*H23) - H13;
H64 = a10*H44 - k4*a11*(-k4 + I*b*H24) + I*b*a12*(I*b + k4*H24) - H14;
H65 = a10*H45 - k5*a11*(-k5 + I*b*H25) + I*b*a12*(I*b + k5*H25) - H15;
H71 = I*b*(I*b*H21 - k1) - k1*a13*(I*b + H21*k1) + a14*H31;
H72 = I*b*(I*b*H22 - k2) - k2*a13*(I*b + H22*k2) + a14*H32;
H73 = I*b*(I*b*H23 - k3) - k3*a13*(I*b + H21*k3) + a14*H33;
H74 = I*b*(I*b*H24 - k4) - k4*a13*(I*b + H24*k4) + a14*H34;
H75 = I*b*(I*b*H25 - k5) - k5*a13*(I*b + H25*k5) + a14*H35;
M1 = 8.9842 10^045 + 6.2942 10^(046) I
M2 = 6.9622 10^046 - 5.3668 10^(046) I
M3 = 2.1724 10^046 + 3.7184 10^(046) I
M4 = -9.1931*10^046 + 7.5101 10^(046) I
M5 = -8.3987*10^045 - 1.2156 10^(047) I
U1 = (-k1 + I*b*H21)*M1*e^(-k1*x) + (-k2 + I*b*H22)*M2*
e^(-k2*x) + (-k3 + I*b*H23)*M3*e^(-k3*x) + (-k4 + I*b*H24)*M4*
e^(-k4*x) + (-k5 + I*b*H25)*M5*e^(-k5*x);
U = U1*e^(w*t + I*b*z);
Plot[Re, {x, 0, 5}],
any support in which I can find graph will be appreciated