- #1
ra_forever8
- 129
- 0
non-dimensionalisation equation:
\begin{equation} \frac {du}{d\tau}=\frac{\overline{\lambda}_{1} u}{u+1} -\overline{r}_{ab}uv -\overline{d}u
\end{equation}
where $\overline{\lambda}_{1}= \frac {\lambda_{1}}{\lambda_{2} K_{1}}$
Another non-dimensionalisation equations
\begin{equation} \frac {dv}{d\tau}=(1-v) -\overline{r}_{ba}uv
\end{equation}
THE REAL QUESTION IS: calculate the steady state $(u_4,v_4)$ and $(u_5,v_5)$? Discuss the occurrence of these steady-states in respect of any relationships between the non-dimensional. Note you are not required to determine the stability of these two states.
=>
I have already calculated the steady-states of $(u_4,v_4)$ and $(u_5,v_5)$ which are
$(u_4,v_4)$ =($ \frac{\overline{\lambda}_{1} - \overline{d} -\overline{r}_{ab}}{\overline{r}_{ab} + \overline{d}} ,1)$
$(u_5,v_5)$ =($ \frac{\overline{\lambda}_{1} - \overline{d} -\overline{r}_{ab}}{\overline{r}_{ab} + \overline{d}}$ ,$ 1 - \overline{r}_{ba} \frac{\overline{\lambda}_{1} - \overline{d} -\overline{r}_{ab}}{\overline{r}_{ab} + \overline{d}}$ )
I HAVE ALREADY CALCULATED $(u_1,v_1)$ and $(u_2,v_2)$ and $(u_3,v_3)$ but i an not interested to talk about their steady-state with respect to non-dimensional parameters.
here are the non-dimensional parameters which I have also determined:
$\overline{\lambda}_{1}= \frac {\lambda_{1}}{\lambda_{2} K_{1}}$
$\overline{d}= \frac{d}{\lambda_{2}}$
$\overline{r}_{ab} = \frac{\overline{r}_{ab} K_{2}} {\lambda_{2}}$
$\overline{r}_{ba} = \frac{\overline{r}_{ab} K_{1}} {\lambda_{2}}$
can anyone please please help me in discussion of these steady states $(u_4,v_4)$ and $(u_5,v_5)$ with the above non-dimensional parameters .
\begin{equation} \frac {du}{d\tau}=\frac{\overline{\lambda}_{1} u}{u+1} -\overline{r}_{ab}uv -\overline{d}u
\end{equation}
where $\overline{\lambda}_{1}= \frac {\lambda_{1}}{\lambda_{2} K_{1}}$
Another non-dimensionalisation equations
\begin{equation} \frac {dv}{d\tau}=(1-v) -\overline{r}_{ba}uv
\end{equation}
THE REAL QUESTION IS: calculate the steady state $(u_4,v_4)$ and $(u_5,v_5)$? Discuss the occurrence of these steady-states in respect of any relationships between the non-dimensional. Note you are not required to determine the stability of these two states.
=>
I have already calculated the steady-states of $(u_4,v_4)$ and $(u_5,v_5)$ which are
$(u_4,v_4)$ =($ \frac{\overline{\lambda}_{1} - \overline{d} -\overline{r}_{ab}}{\overline{r}_{ab} + \overline{d}} ,1)$
$(u_5,v_5)$ =($ \frac{\overline{\lambda}_{1} - \overline{d} -\overline{r}_{ab}}{\overline{r}_{ab} + \overline{d}}$ ,$ 1 - \overline{r}_{ba} \frac{\overline{\lambda}_{1} - \overline{d} -\overline{r}_{ab}}{\overline{r}_{ab} + \overline{d}}$ )
I HAVE ALREADY CALCULATED $(u_1,v_1)$ and $(u_2,v_2)$ and $(u_3,v_3)$ but i an not interested to talk about their steady-state with respect to non-dimensional parameters.
here are the non-dimensional parameters which I have also determined:
$\overline{\lambda}_{1}= \frac {\lambda_{1}}{\lambda_{2} K_{1}}$
$\overline{d}= \frac{d}{\lambda_{2}}$
$\overline{r}_{ab} = \frac{\overline{r}_{ab} K_{2}} {\lambda_{2}}$
$\overline{r}_{ba} = \frac{\overline{r}_{ab} K_{1}} {\lambda_{2}}$
can anyone please please help me in discussion of these steady states $(u_4,v_4)$ and $(u_5,v_5)$ with the above non-dimensional parameters .
Last edited: