- #1
issacnewton
- 1,041
- 37
- Homework Statement
- Prove that
$$ \sum_{k=0}^p \binom{m}{k}\binom{n}{p-k} = \binom{m+n}{p} $$
for non-negative integers m,n,p
- Relevant Equations
- Mathematical Induction
I know that this can be proven with combinatorial proof. But, here I want to prove by induction. I fix ##m,n## and try to induction on ##p##. Let ##P(m,n,p)## be the statement which needs to be proven. Base case is ##p=0##. LHS (left hand side) becomes
$$ \sum_{k=0}^0 \binom{m}{k}\binom{n}{0-k} = \binom{m}{0}\binom{n}{0-0} = 1 $$
And RHS (right hand side) becomes
$$ \binom{m+n}{0} = 1 $$
Hence ##P(m,n,0)## is true. Now, I assume ##P(m,n, p)## and try to prove ##P(m,n,p+1)##. So, ##P(m,n,p)## states
$$ \sum_{k=0}^p \binom{m}{k}\binom{n}{p-k} = \binom{m+n}{p} $$
$$ \binom{m}{0}\binom{n}{p} + \binom{m}{1}\binom{n}{p-1} + \cdots + \binom{m}{p}\binom{n}{p-p} = \binom{m+n}{p} \cdots\cdots (1) $$
And, I need to prove that
$$ \sum_{k=0}^{p+1} \binom{m}{k}\binom{n}{p+1-k} = \binom{m+n}{p+1} $$
Consider the left hand side
$$ \binom{m}{0}\binom{n}{p+1} + \binom{m}{1}\binom{n}{p} + \cdots + \binom{m}{p+1}\binom{n}{p+1-(p+1)} $$
I tried using following binomial identity
$$ \binom{a}{b} = \frac{a-b+1}{b} \binom{a}{b-1} $$
for various terms in the sum but it lead to nowhere.
Thanks ##\smile##
$$ \sum_{k=0}^0 \binom{m}{k}\binom{n}{0-k} = \binom{m}{0}\binom{n}{0-0} = 1 $$
And RHS (right hand side) becomes
$$ \binom{m+n}{0} = 1 $$
Hence ##P(m,n,0)## is true. Now, I assume ##P(m,n, p)## and try to prove ##P(m,n,p+1)##. So, ##P(m,n,p)## states
$$ \sum_{k=0}^p \binom{m}{k}\binom{n}{p-k} = \binom{m+n}{p} $$
$$ \binom{m}{0}\binom{n}{p} + \binom{m}{1}\binom{n}{p-1} + \cdots + \binom{m}{p}\binom{n}{p-p} = \binom{m+n}{p} \cdots\cdots (1) $$
And, I need to prove that
$$ \sum_{k=0}^{p+1} \binom{m}{k}\binom{n}{p+1-k} = \binom{m+n}{p+1} $$
Consider the left hand side
$$ \binom{m}{0}\binom{n}{p+1} + \binom{m}{1}\binom{n}{p} + \cdots + \binom{m}{p+1}\binom{n}{p+1-(p+1)} $$
I tried using following binomial identity
$$ \binom{a}{b} = \frac{a-b+1}{b} \binom{a}{b-1} $$
for various terms in the sum but it lead to nowhere.
Thanks ##\smile##