Mathematical Induction with Sigma notation

Click For Summary
The discussion focuses on proving the formula for the sum of cubes using mathematical induction. The initial base case check for n=1 contained an error in the denominator, which was mistakenly set to 2 instead of 4, leading to an incorrect conclusion. The correct base case shows that 1 equals 1, confirming the formula holds for n=1. For the induction step, it is suggested to add (k+1)^3 to both sides of the equation, leading to a successful factorization that confirms the formula for n=k+1. The participants clarify the steps needed to complete the proof, emphasizing the importance of correctly applying the induction hypothesis.
NotChelsea
Messages
2
Reaction score
0
Prove by mathematical induction that

n
sigma r^3 = n^2(n+1)^2/4
r = 1

so far I have

1
sigma r^3 = 1^2(1+1)^2/2
r=1

1 = 1(4)/2

1 = 4/2

1 = 2

I'm not sure what to do after this for the k+1 case.
 
Last edited:
Physics news on Phys.org
Hello, and welcome to MHB! (Wave)

Your induction hypothesis $P_n$ is:

$$\sum_{r=1}^{n}\left(r^3\right)=\frac{n^2(n+1)^2}{4}$$

As your induction step, I would suggest adding $$(n+1)^3$$ to both sides...

edit: I just noticed you have an error in your check of the base case $P_1$...can you spot it?
 
ummmm is it because of the "1 = 2"?
 
The "1=2" happened because you divided by 2 instead of 4.
 
NotChelsea said:
Prove by mathematical induction that

n
sigma r^3 = n^2(n+1)^2/4
r = 1

so far I have

1
sigma r^3 = 1^2(1+1)^2/2
r=1
As Opalg pointed out, in your original formula you have "/4" but have accidently changed that to "/2".

1 = 1(4)/2

1 = 4/2

1 = 2
which is NOT true! But with "4" in the denominator as in the original formula this becomes 1= 1(4)/4 which is true.

I'm not sure what to do after this for the k+1 case.
The reason so many induction problems involve sums is that then the "k+1" case is just the "k" case plus the next term!

With n= k+ 1 you have
[math]\sum_{r=1}^{k+1} r^3= \sum_{r= 1}^k r^3+ (k+1)^3[/math]
[math]= k^2(k+1)^2/4+ (k+1)^3[/math].

Factor [math](k+1)^2[/math] out of that to get
[math]= (k+1)^2(k^2/4+ k+ 1)= (k+1)^2(k^2+ 4k+ 4)/4[/math]

And now you just have to observe that [math]k^2+ 4k+ 4= (k+ 2)^2= ((k+1)+1)^2[/math] so that [math](k+1)^2(k^2+ 4k+ 4)/4= (k+1)^2((k+1)+1)^2/4[/math]
really is "[math]n^2(n+1)^2/4[/math]" with n= k+ 1.
 
ohhhh I see it now. Thank you so much!
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K