- #36
- 24,488
- 15,033
Well, for us normal theoreticians it's always good, if you - from time to time - express everything in our normal notation with indices and usual differential operators (partial derivatives or covariant derivatives or functional derivatives). Often you have quite complicated looking formal equations that become understandable at one glance when translated to old-fashioned 19-century Ricci-calculus notation. I know that's nearly heretic to mathematicians, but it's the common notation in the physics community (and imho for the good reason of clarity and "calculational safety").[URL='https://www.physicsforums.com/insights/author/urs-schreiber/']Urs Schreiber[/URL] said:The variational derivative becomes the de Rham differential after "transgression" to the space of field histories. This is the content of the section Local observables and Transgression of chapter 7. Observables, the very statement is item 2 of prop. 7.32.
The full proof is given there, but this should be intuitively clear:
The variational derivative measures the change of field values at a point of spacetime, or of change of spacetime derivative of the field value at a point of spacetime, etc. and the field values at spacetime points are precisely the "canonical variables" for the field theory, while the spacetime derivatives of the field values are precisely the "canonical momenta". It it is in this way that the variational derivative on field eventually becomes the de Rham differential on the phase space.