- #1
nhrock3
- 415
- 0
[TEX]\vec{E}=f_1(z-ct)\hat{x}+f_2(z-ct)\hat{y}+0\hat{z}[/TEX][TEX]
f_1(u)[/TEX] and [TEX]f_2(u)[/TEX] are functions of "u"
u=z-ct
i have the formula
[TEX]\nabla \times \vec{E}=-\frac{db}{dt } [/TEX]
[TEX]\nabla\times\vec{E}=|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z}\\
\frac{{d}}{dx} & {\frac{{d}}{dy}} & \frac{{d}}{dz}|=\\
f_{1}(z-ct) & f_{2}(z-ct) & 0\end{array}\hat{-x}\frac{{df_{2}}}{dz}-\hat{y}\frac{{df_{1}}}{dz}+\hat{z0}=-\frac{{d\overrightarrow{B}}}{dt}[/TEX]
i want to find B
so i need to integrate the left side by t
in order to get B
but f_1 f_2 are function of u
how to make a result
?
and then i need to show that [tex]B\bullet E=0[/tex]
i can't get 0
f_1(u)[/TEX] and [TEX]f_2(u)[/TEX] are functions of "u"
u=z-ct
i have the formula
[TEX]\nabla \times \vec{E}=-\frac{db}{dt } [/TEX]
[TEX]\nabla\times\vec{E}=|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z}\\
\frac{{d}}{dx} & {\frac{{d}}{dy}} & \frac{{d}}{dz}|=\\
f_{1}(z-ct) & f_{2}(z-ct) & 0\end{array}\hat{-x}\frac{{df_{2}}}{dz}-\hat{y}\frac{{df_{1}}}{dz}+\hat{z0}=-\frac{{d\overrightarrow{B}}}{dt}[/TEX]
i want to find B
so i need to integrate the left side by t
in order to get B
but f_1 f_2 are function of u
how to make a result
?
and then i need to show that [tex]B\bullet E=0[/tex]
i can't get 0