- #1
mliuzzolino
- 58
- 0
Homework Statement
Let f: A --> B be a function and let S, T [itex]\subseteq[/itex] A and U, V [itex]\subseteq[/itex] B.
Give a counterexample to the statement: If f (S) [itex]\subseteq[/itex] f (T); then S [itex]\subseteq[/itex] T:
Homework Equations
The Attempt at a Solution
PF:
Assume f(S) [itex]\subseteq[/itex] f(T).
Let x [itex]\in[/itex] S.
Then [itex]\exists[/itex] y [itex]\in[/itex] f(S) [itex]\ni[/itex] f(x) = y.
Since f(S) [itex]\subseteq[/itex] f(T), y [itex]\in[/itex] f(T).
****
Suppose [itex]\forall[/itex] a [itex]\in[/itex] T where a ≠ x, [itex]\exists[/itex] y [itex]\in[/itex] f(T) [itex]\ni[/itex] f(a) = y.
Then x [itex]\notin[/itex] T.
Q.E.D.
I am not exactly sure I am doing this right, especially the reasoning beyond the ****. I almost have the feeling I should use the pre image of f(T) somehow to show that x [itex]\notin[/itex] T.
Why can I not just say that [itex]\exists[/itex] x [itex]\in[/itex] S where x [itex]\notin[/itex] T? Would that not suffice as a counterexample in such a general proof as this?