MHB Maths Mechanics (M1): Calculate Initial Velocity & Acceleration

  • Thread starter Thread starter Needhelp2
  • Start date Start date
  • Tags Tags
    Mechanics
AI Thread Summary
The discussion revolves around calculating the initial velocity and acceleration of a particle moving with constant acceleration. The user set up two equations based on the particle's positions at specific times using the suvat equations but encountered discrepancies with the answer book. After reviewing the equations, it was determined that the correct acceleration is -2/5 m/s² and the initial velocity is 15 m/s. The user realized their method was correct, but they had made an arithmetic error in their calculations. This highlights the importance of careful arithmetic in solving physics problems.
Needhelp2
Messages
17
Reaction score
0
This question is probably impossibly easy, but I have been staring at it for half an hour now, and don't seem to be able to get the right answer :mad:, so any help would be great!

A particle P moves on a straight line with constant acceleration. At t=0, P passes through the point 0 on a line. When t=20, P passes through a point A, where OA=220m and when t=50, P passes through a point B where OB= 250m and AB=30m.

Calculate the initial velocity and acceleration of P.

This is what I did:

I spilt it into two equations, with my first being- 220=20u +200a and my second being- 250=50u + 1250a (using the suvat equation s= ut + 0.5at2)
I then sub in u= 11-10a as u = 220-200a into my second equation to get 250= 550-500a+1250a, and therefore my a = -3/7ms-2.

In my answer book it says the the acceleration = -0.4ms-2, and so I gave up trying to find u... does anyone know where I went wrong ( or even is the book wrong- it can be very unreliable!)

Thank you!
 
Mathematics news on Phys.org
Needhelp said:
This question is probably impossibly easy, but I have been staring at it for half an hour now, and don't seem to be able to get the right answer :mad:, so any help would be great!

A particle P moves on a straight line with constant acceleration. At t=0, P passes through the point 0 on a line. When t=20, P passes through a point A, where OA=220m and when t=50, P passes through a point B where OB= 250m and AB=30m.

Calculate the initial velocity and acceleration of P.

This is what I did:

I spilt it into two equations, with my first being- 220=20u +200a and my second being- 250=50u + 1250a (using the suvat equation s= ut + 0.5at2)
I then sub in u= 11-10a as u = 220-200a into my second equation to get 250= 550-500a+1250a, and therefore my a = -3/7ms-2.

In my answer book it says the the acceleration = -0.4ms-2, and so I gave up trying to find u... does anyone know where I went wrong ( or even is the book wrong- it can be very unreliable!)

Thank you!

Under constant acceleration \(a\) the position \(s\) at time \(t\) is:

\[s(t)=\frac{at^2}{2}+v_0t+s_0\]

where \(v_0\) and \(s_0\) are the velocity and position at \(t=0\).

Then you are told that:

\(s(0)=s_0=0\)

and so using this and the next thing you are told:

\(s(20)=200a+20v_0=220\)

and again:

\(s(50)=1250a+50v_0=250\)

which gives you the pair of simultaneous equations:

\(200a+20v_0=220\)
\(1250a+50v_0=250\)

to solve (multiply the first by \(5\) and the second by \(2\) and subtract), which has solution \(a=-2/5\) and \(v_0=15\)

CB
 
Ahh so my method was right, it was just a stupid arithmetic error somewhere! Thank you so much!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top