- #1
planauts
- 86
- 0
Homework Statement
Find the values of a and b such that the equations:
3x + ay = 2 and -6x + 4y = b
have i) an infinite set of solutions ii) no solutions
The Attempt at a Solution
[itex]\begin{pmatrix}
3 & a \\
-6 & 4
\end{pmatrix} * \begin{pmatrix}
x\\
y
\end{pmatrix}
= \begin{pmatrix}
2\\
b
\end{pmatrix}[/itex]
[itex]
\begin{pmatrix}
x\\
y
\end{pmatrix}
=
\begin{pmatrix}
3 & a \\
-6 & 4
\end{pmatrix}^{-1} *
\begin{pmatrix}
2\\
b
\end{pmatrix}
[/itex][itex]
\begin{pmatrix}
x\\
y
\end{pmatrix}
=
\tfrac{1}{12+6a} *
\begin{pmatrix}
4 & -a \\
6 & 3
\end{pmatrix} *
\begin{pmatrix}
2\\
b
\end{pmatrix}
[/itex]
I think that when the matrix is singular, then it does not have ONE solution (infinite OR no solution). So when a = -2 then it has infinite OR no solution. But what about b, how do I figure out the value for b?
Thanks