- #1
- 2,020
- 827
This is related to a recent (mainly unserious) post I recently made. I did some more work on a similar problem and I'd like to bounce off an idea why this doesn't work. I really am not sure if I'm right so I'd appreciate a comment.
I am working with some simple systems of difference equations. For example, writing it in matrix form it's:
\(\displaystyle \left ( \begin{matrix} a_{n + 1} \\ b_{n + 1} \end{matrix} \right ) = \left ( \begin{matrix} 0 & n \\ 1 & 0 \end{matrix} \right ) \left ( \begin{matrix} a_n \\ b_n \end{matrix} \right )\)
The idea is to use matrix methods to simplify the system, ie if I diagonalize the matrix and transform the vectors into the eigenbasis I can separate the a's and b's. So I do that, solve the matrix recursion and transform back to the original basis. Done, right? Wrong! The solution doesn't check.
I know we can do this with a system with constant matrix elements so my question is: Does the fact that we have a non-constant transformation matrix (ie it depends on n) change the recursion when we change to the eigenbases?
-Dan
I am working with some simple systems of difference equations. For example, writing it in matrix form it's:
\(\displaystyle \left ( \begin{matrix} a_{n + 1} \\ b_{n + 1} \end{matrix} \right ) = \left ( \begin{matrix} 0 & n \\ 1 & 0 \end{matrix} \right ) \left ( \begin{matrix} a_n \\ b_n \end{matrix} \right )\)
The idea is to use matrix methods to simplify the system, ie if I diagonalize the matrix and transform the vectors into the eigenbasis I can separate the a's and b's. So I do that, solve the matrix recursion and transform back to the original basis. Done, right? Wrong! The solution doesn't check.
I know we can do this with a system with constant matrix elements so my question is: Does the fact that we have a non-constant transformation matrix (ie it depends on n) change the recursion when we change to the eigenbases?
-Dan