- #1
gruba
- 206
- 1
Homework Statement
Let [itex]A:\mathbb R_2[x]\rightarrow \mathbb R_2[x][/itex] is a linear transformation defined as [itex](A(p))(x)=p'(x+1)[/itex] where [itex]\mathbb R_2[x][/itex] is the space of polynomials of the second order. Find all [itex]a,b,c\in\mathbb R[/itex] such that the matrix [itex]\begin{bmatrix}
a & 1 & 0 \\
b & 0 & 1 \\
c & 0 & 0 \\
\end{bmatrix}[/itex] is the matrix of linear transformation [itex]A[/itex] with respect to some arbitrary basis of [itex]\mathbb R_2[x][/itex].
Homework Equations
-Polynomial vector space
-Basis
The Attempt at a Solution
If we choose the standard basis, [tex]\mathcal B=\{1,x,x^2\}\Rightarrow p(x)=\alpha+\beta x+\gamma x^2,\alpha,\beta,\gamma\in\mathbb R\Rightarrow (A(p))(x)=\beta+(\beta+2\gamma)x+2\gamma x^2\Rightarrow[/tex]
[itex]A(1)=0x^2+0x+1,A(x)=0x^2+1x+1,A(x^2)=2x^2+0x+0[/itex]
Setting [itex]A(1),A(x),A(x^2)[/itex] as column vectors gives the matrix [itex]\begin{bmatrix}
0 & 0 & 2 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
\end{bmatrix}[/itex] that is not of the form of given matrix [itex]\begin{bmatrix}
a & 1 & 0 \\
b & 0 & 1 \\
c & 0 & 0 \\
\end{bmatrix}[/itex].
This means that we can't choose the standard basis to get matrix of [itex]A[/itex] that will be of the form [itex]\begin{bmatrix}
a & 1 & 0 \\
b & 0 & 1 \\
c & 0 & 0 \\
\end{bmatrix}[/itex].
Question: Do we have to guess a proper basis? If not, then how to find one?