- #1
ognik
- 643
- 2
Maybe I just need help understanding the question ...
write $ x^2 + 2xy + 2yz + z^2 $ as a sum of squares $ (x')^2 -2(y')^2 + 2(z')^2 $ in a rotated coord system.
The 1st expression $ = \left[ x, y, z \right]M \begin{bmatrix}x\\y\\z\end{bmatrix} $ and I get $ M = \begin{bmatrix}1&1&0\\1&0&1\\0&1&1\end{bmatrix}$
(I wonder if a matrix with 'anti-trace' = 0 has any significant usage somewhere?)
So then would I go 2nd expression (which I see is diagonal) $ = SMS^{-1} $ and somehow find $S$ from that?
write $ x^2 + 2xy + 2yz + z^2 $ as a sum of squares $ (x')^2 -2(y')^2 + 2(z')^2 $ in a rotated coord system.
The 1st expression $ = \left[ x, y, z \right]M \begin{bmatrix}x\\y\\z\end{bmatrix} $ and I get $ M = \begin{bmatrix}1&1&0\\1&0&1\\0&1&1\end{bmatrix}$
(I wonder if a matrix with 'anti-trace' = 0 has any significant usage somewhere?)
So then would I go 2nd expression (which I see is diagonal) $ = SMS^{-1} $ and somehow find $S$ from that?
Last edited by a moderator: