- #1
Jundoe
- 10
- 0
The problem asks to find the standard matrix for the composition of these two linear operations on R2.
- A reflection about the line y=x, followed by a rotation counterclockwise of 60o.
This is how I proceeded.
y=x
$\begin{bmatrix}0&1\\1&0 \end{bmatrix}$
counter clockwise 60degs.
$\begin{bmatrix}1/2&-sqrt(3)/2\\sqrt(3)/2&1/2 \end{bmatrix}$
...then I multiplied them. Causing a dilemma. What order?
$\begin{bmatrix}0&1\\1&0 \end{bmatrix}$$\begin{bmatrix}1/2&-sqrt(3)/2\\sqrt(3)/2&1/2 \end{bmatrix}$
yields
$\begin{bmatrix}sqrt(3)/2&1/2\\1/2&-sqrt(3)/2 \end{bmatrix}$
The reverse obviously gave me a different answer, but I couldn't really visualize it.
$\begin{bmatrix}1/2&-sqrt(3)/2\\sqrt(3)/2&1/2 \end{bmatrix}$$\begin{bmatrix}0&1\\1&0 \end{bmatrix}$Was my initial step correct?
- A reflection about the line y=x, followed by a rotation counterclockwise of 60o.
This is how I proceeded.
y=x
$\begin{bmatrix}0&1\\1&0 \end{bmatrix}$
counter clockwise 60degs.
$\begin{bmatrix}1/2&-sqrt(3)/2\\sqrt(3)/2&1/2 \end{bmatrix}$
...then I multiplied them. Causing a dilemma. What order?
$\begin{bmatrix}0&1\\1&0 \end{bmatrix}$$\begin{bmatrix}1/2&-sqrt(3)/2\\sqrt(3)/2&1/2 \end{bmatrix}$
yields
$\begin{bmatrix}sqrt(3)/2&1/2\\1/2&-sqrt(3)/2 \end{bmatrix}$
The reverse obviously gave me a different answer, but I couldn't really visualize it.
$\begin{bmatrix}1/2&-sqrt(3)/2\\sqrt(3)/2&1/2 \end{bmatrix}$$\begin{bmatrix}0&1\\1&0 \end{bmatrix}$Was my initial step correct?