- #1
fogvajarash
- 127
- 0
I was looking over my notes today, and I realized that there was a point that isn't pretty clear.
If we have the image under T (being T a matrix transformation induced by a matrix A) of the unit square, then its area should be abs(det(A)). Why is this though? I was looking at the proof and I saw that the transformation was defined as T(i) = Ti = (a c 0) and T(j) = Tj = (b d 0) [in this case i and j are the unit vectors]. However, the area of the parallelogram made between these vectors is stated to be as [[Ai x Aj]] (without the sinθ being θ the angle these vectors make). Or is it because as if they are unit vectors, they are 90 degrees to each other?
Thank you very much.
Edit: This link (around page 1) should help if I'm not clear with my explanations http://www.math.mun.ca/~mkondra/linalg2/la2set7.pdf
If we have the image under T (being T a matrix transformation induced by a matrix A) of the unit square, then its area should be abs(det(A)). Why is this though? I was looking at the proof and I saw that the transformation was defined as T(i) = Ti = (a c 0) and T(j) = Tj = (b d 0) [in this case i and j are the unit vectors]. However, the area of the parallelogram made between these vectors is stated to be as [[Ai x Aj]] (without the sinθ being θ the angle these vectors make). Or is it because as if they are unit vectors, they are 90 degrees to each other?
Thank you very much.
Edit: This link (around page 1) should help if I'm not clear with my explanations http://www.math.mun.ca/~mkondra/linalg2/la2set7.pdf
Last edited: