- #1
lichen1983312
- 85
- 2
I am very confused about that in some literature the Maurer Cartan forms for a matrix group is written as
##{\omega _g} = {g^{ - 1}}dg##
what is ##dg## here? can anyone give an example explicitly?
My best guess is
##
dg = \left( {\begin{array}{*{20}{c}}
{d{x^{11}}}& \ldots &{d{x^{1m}}}\\
\vdots & \ddots & \vdots \\
{d{x^{m1}}}& \cdots &{d{x^{mm}}}
\end{array}} \right)% MathType!End!2!1!
##
and if ## V \in {T_e}G##, I can find
##{\left. {{X_V}} \right|_g} = {L_{g * }}V = {\left. {{{(gV)}^{kj}}\frac{\partial }{{\partial {x^{kj}}}}} \right|_g}##
in this way i seem to be able to pullback ##{\left. {{X_V}} \right|_g}##
##\begin{array}{l}
{g^{ - 1}}dg({X_V}) = {({g^{ - 1}})^{ik}}d{x^{kj}}\left( {{{(gV)}^{mn}}\frac{\partial }{{\partial {x^{mn}}}}} \right)\\
= {({g^{ - 1}})^{im}}{(gV)^{mn}} = {({g^{ - 1}}gV)^{in}} = {V^{in}}
\end{array}##
am I right ?
##{\omega _g} = {g^{ - 1}}dg##
what is ##dg## here? can anyone give an example explicitly?
My best guess is
##
dg = \left( {\begin{array}{*{20}{c}}
{d{x^{11}}}& \ldots &{d{x^{1m}}}\\
\vdots & \ddots & \vdots \\
{d{x^{m1}}}& \cdots &{d{x^{mm}}}
\end{array}} \right)% MathType!End!2!1!
##
and if ## V \in {T_e}G##, I can find
##{\left. {{X_V}} \right|_g} = {L_{g * }}V = {\left. {{{(gV)}^{kj}}\frac{\partial }{{\partial {x^{kj}}}}} \right|_g}##
in this way i seem to be able to pullback ##{\left. {{X_V}} \right|_g}##
##\begin{array}{l}
{g^{ - 1}}dg({X_V}) = {({g^{ - 1}})^{ik}}d{x^{kj}}\left( {{{(gV)}^{mn}}\frac{\partial }{{\partial {x^{mn}}}}} \right)\\
= {({g^{ - 1}})^{im}}{(gV)^{mn}} = {({g^{ - 1}}gV)^{in}} = {V^{in}}
\end{array}##
am I right ?
Last edited: