- #1
GreenGoblin
- 68
- 0
Given this seemingly simple problem of maximising the area of an isosceles triangle with perimeter equal to 1. What is the best approach and how will I find a result easiest (I know how to get the answer but I need to be able to do these problems fast, so please help me look for a quick method if there is one?)
What I do is go for
max $(\frac {y}{2}^{2}) \sqrt(x^{2}-(\frac{y}{2})^{2})$
subject to $2x + y = 1$
Then rearrange y = 1 - 2x and substitute, maximise using the derivative etc but it takes absolute ages...
Is there a quicker way? How should I approach this kind of problem (a different problem may be given) in a timed scenario?
I got to $\frac{1-3x}{2\sqrt (x-\frac{1}{4}}$ which would make at 0 x=1/3 = y? This can't be right as it would make it an equilateral not isosceles. I also make the area $\frac{1}{12\sqrt (3)}$ which doesn't feel right.
What I do is go for
max $(\frac {y}{2}^{2}) \sqrt(x^{2}-(\frac{y}{2})^{2})$
subject to $2x + y = 1$
Then rearrange y = 1 - 2x and substitute, maximise using the derivative etc but it takes absolute ages...
Is there a quicker way? How should I approach this kind of problem (a different problem may be given) in a timed scenario?
I got to $\frac{1-3x}{2\sqrt (x-\frac{1}{4}}$ which would make at 0 x=1/3 = y? This can't be right as it would make it an equilateral not isosceles. I also make the area $\frac{1}{12\sqrt (3)}$ which doesn't feel right.
Last edited: