- #1
deepalakshmi
- 95
- 6
- TL;DR Summary
- I have two pure states i.e. initial state and final state. I should get Fidelity as 1 when #t=\pi{/2}#
But I am not getting. What is wrong in my calculation?
$$F =|\langle\psi|\phi \rangle|^2$$
$$|\psi\rangle=|\alpha\rangle|0\rangle$$
$$|\phi\rangle= |\cos(t)\alpha\rangle|i\alpha\sin(t)\rangle$$
$$F=|(|\langle\alpha|\langle 0|)(|\cos(t)\alpha\rangle|i\alpha\sin(t)\rangle)|^2$$
Now simplifying $$\langle\alpha|\cos(t)\alpha\rangle$$
$$=e^{-\frac{|\alpha|^2}{2}}\sum_{n=0}\frac{(\alpha^\ast)^n}{\sqrt{n!}}\langle n|e^{-\frac{|\alpha\cos(t)|^2}{2}}\sum_{m=0}\frac{(\alpha\cos(t))^m}{\sqrt{m!}}|m\rangle$$
$$=e^{-\frac{|\alpha|^2}{2}}e^{-\frac{|\alpha\cos(t)|^2}{2}}\sum_{n=0}\sum_{m=0}\frac{(\alpha^\ast\alpha\cos(t))^n}{\sqrt{n!}}\langle n|m\rangle$$
$$=e^{{-|\alpha|^2}{/2}}e^{{-|\alpha\cos(t)|^2}{/2}}e^{|\alpha|^2\cos(t)}$$
Now simplifying $$\langle 0|i\sin(t)\alpha\rangle$$
$$=\langle 0| e^{-\frac{|\alpha\sin(t)|^2}{2}}\sum_{n=0}\frac{(\alpha i\sin(t))^n}{\sqrt{n!}}|n\rangle $$
$$=e^{-\frac{|\alpha\sin(t)|^2}{2}}$$
$$F=|e^{{-|\alpha|^2}{/2}}e^{{-|\alpha\cos(t)|^2}{/2}}e^{|\alpha|^2\cos(t)}e^{-\frac{|\alpha\sin(t)|^2}{2}}|^2$$
Now when t=0 , I am getting F=1.
when $t=\pi{/2}$ I am getting F= (4.5)(10^-5)
But my teacher says that even at #t=\pi{/2}#, I should get F=1. Here alpha is the coherent state and its value is sqrt5
Why should I get 1 and Why am i not getting 1?
What's wrong with my calculation?
$$|\psi\rangle=|\alpha\rangle|0\rangle$$
$$|\phi\rangle= |\cos(t)\alpha\rangle|i\alpha\sin(t)\rangle$$
$$F=|(|\langle\alpha|\langle 0|)(|\cos(t)\alpha\rangle|i\alpha\sin(t)\rangle)|^2$$
Now simplifying $$\langle\alpha|\cos(t)\alpha\rangle$$
$$=e^{-\frac{|\alpha|^2}{2}}\sum_{n=0}\frac{(\alpha^\ast)^n}{\sqrt{n!}}\langle n|e^{-\frac{|\alpha\cos(t)|^2}{2}}\sum_{m=0}\frac{(\alpha\cos(t))^m}{\sqrt{m!}}|m\rangle$$
$$=e^{-\frac{|\alpha|^2}{2}}e^{-\frac{|\alpha\cos(t)|^2}{2}}\sum_{n=0}\sum_{m=0}\frac{(\alpha^\ast\alpha\cos(t))^n}{\sqrt{n!}}\langle n|m\rangle$$
$$=e^{{-|\alpha|^2}{/2}}e^{{-|\alpha\cos(t)|^2}{/2}}e^{|\alpha|^2\cos(t)}$$
Now simplifying $$\langle 0|i\sin(t)\alpha\rangle$$
$$=\langle 0| e^{-\frac{|\alpha\sin(t)|^2}{2}}\sum_{n=0}\frac{(\alpha i\sin(t))^n}{\sqrt{n!}}|n\rangle $$
$$=e^{-\frac{|\alpha\sin(t)|^2}{2}}$$
$$F=|e^{{-|\alpha|^2}{/2}}e^{{-|\alpha\cos(t)|^2}{/2}}e^{|\alpha|^2\cos(t)}e^{-\frac{|\alpha\sin(t)|^2}{2}}|^2$$
Now when t=0 , I am getting F=1.
when $t=\pi{/2}$ I am getting F= (4.5)(10^-5)
But my teacher says that even at #t=\pi{/2}#, I should get F=1. Here alpha is the coherent state and its value is sqrt5
Why should I get 1 and Why am i not getting 1?
What's wrong with my calculation?