Max Horizontal Displacement of Projectile and its Velocity at T

  • #1
Theia
122
1
Let \(\displaystyle x = v_0\cos \alpha _0 t\) and \(\displaystyle y = y_0 + v_0 \sin \alpha _0 t - \tfrac{1}{2} gt^2\), where

  • \(\displaystyle v_0\) is speed at time \(\displaystyle t = 0\),
  • \(\displaystyle \alpha _0\) is the angle between positive \(\displaystyle x\)-axis and initial velocity vector (\(\displaystyle \alpha _0 \in (0, \pi/2)\)),
  • \(\displaystyle t\) time in seconds,
  • \(\displaystyle y_0 >0\) the \(\displaystyle y\) coordinate at time \(\displaystyle t=0\),
  • \(\displaystyle g\) acceleration due the gravity.

Let \(\displaystyle T\) be the time when the projectile hits positive \(\displaystyle x\)-axis (i.e. the ground). Find the maximum horizontal displacement of the projectile and show that angle between initial velocity vector and velocity vector at time \(\displaystyle T\) is \(\displaystyle \pi/2\).
 
Mathematics news on Phys.org
  • #2
$x_{max} = \dfrac{v_0^2}{g\tan{\alpha_0}}$

(bonus info that can be determined in working this problem) ... the value of $\alpha_0$ that yields a maximum horizontal range is $\alpha_0 = \arctan\left(\dfrac{v_0}{\sqrt{v_0^2 + 2gy_0}}\right)$

let $a = \alpha_0$, initial launch angle (too lazy to type out the Latex)

$b$ = final impact angle at time $T$$T=\dfrac{x}{v_0\cos{a}}$ substitute this expression for $T$ into the equation for $y$. Note $y(T)=0$

$0=y_0 + x\tan{a} - \dfrac{g}{2v_0^2} \cdot x^2\sec^2{a}$

derivative w/respect to $a$ ...

$0 = x\sec^2{a} + \tan{a} \cdot \dfrac{dx}{da} - \dfrac{g}{v_0^2} \left(x^2 \sec^2{a}\tan{a}+x\sec^2{a} \cdot \dfrac{dx}{da} \right)$

when $x$ is a maximum, $\dfrac{dx}{da} = 0$ ...

$0 = x\sec^2{a} - \dfrac{g}{v_0^2} \left(x^2 \sec^2{a}\tan{a}\right)$

$0 = x\sec^2{a}\bigg[1 - \dfrac{g}{v_0^2} \left(x \tan{a}\right) \bigg]$

$x\sec^2{a} \ne 0 \implies x = \dfrac{v_0^2}{g\tan{a}} \implies T = \dfrac{v_0}{g\sin{a}}$

$v_{fx} = v_0\cos{a}$

$v_{fy} = v_0\sin{a} - gT = -v_0 \cdot \dfrac{\cos^2{a}}{\sin{a}}$

$\tan{b} = \dfrac{v_{fy}}{v_{fx}} = -\cot{a}$

$\tan{b} \cdot \tan{a} = -\cot{a} \cdot \tan{a} = -1 \implies a \perp b$
 
Last edited by a moderator:
  • #3
Thank you for your solution! ^^
 
Back
Top