Max Impulse on a pendulum

  • Thread starter Thread starter PakBosMuda
  • Start date Start date
  • Tags Tags
    Impulse Pendulum
AI Thread Summary
An impulse is applied to a pendulum, causing it to move in three dimensions, and the discussion focuses on determining the maximum impulse in the Z-axis to prevent the particle from hitting the roof. The energy of the particle is conserved throughout its motion, leading to the equation that relates initial and final velocities. The condition for avoiding contact with the roof requires the final velocity vector to lie in the XZ-plane, meaning the Y-component of the final velocity must be zero. Angular momentum is not conserved due to the torque created by the weight of the pendulum. The discussion highlights the need for additional equations to solve for the unknown variables of initial and final velocities.
PakBosMuda
Messages
1
Reaction score
0
TL;DR Summary: An impulse is given to the pendulum so that it moves in 3 dimensions. What equations apply throughout its motion?

A particle of mass ##m## is suspended from a string of length ##\ell##. The string is then deflected at an angle ## \theta ##, where the particle and string are in the XY-plane.
Capture.PNG


What is the maximum impulse in the Z-axis direction so that the particle does not hit the roof?
________________________________________________________________________
---------------------------------------------------------------------------

What I already know (CMIIW):

1. Throughout its motion, the energy of the particle is conserved:
$$E_{i} = E_{r}$$
$$PE_{i} + KE_{i} = PE_{r} + KE_{r}$$
$$-m.g. \ell . \cos \theta + \frac{1}{2} . m . v_{i}^2 = 0 + \frac{1}{2} . m . v_{r}^2$$
$$v_{i}^2 = 2g. \ell . \cos \theta + v_{r}^2$$

2. The condition for a particle not to hit the roof is that its final velocity vector (when on the roof) is in the XZ-plane ##\rightarrow \left( v_r \right) _y = 0##
1.jpg


3. Angular momentum is NOT CONSERVED, because the weight creates torque (as well as linear momentum).

There are 2 unknown variables : ##v_i## and ##v_r##, while the only equation I have is energy conservation. What am I missing?
 
Physics news on Phys.org
This is nothing but a spherical pendulum. Angular momentum in what you have lanelef the y-direction is conserved due to rotational symmetry about the y-axis.

Also, please do not use periods as multiplication in ##\LaTeX##. Leaving the multiplication operator is fine.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top