MHB Maximize the sum of squared distances

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Sum
AI Thread Summary
The discussion focuses on maximizing the sum of squared distances between points on the surface of an ellipsoid defined by the equation $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2} = 1$. The goal is to select $2n$ points such that their centroid is at the origin, while maximizing the expression \(\sum_{1\leq i < j \leq 2n}\left | P_i-P_j \right |^2\). A suggested solution is provided, likely involving geometric or optimization techniques to achieve the maximum distance configuration. The underlying mathematical principles may involve properties of ellipsoids and distance calculations in three-dimensional space. The discussion emphasizes the importance of both the choice of points and their spatial arrangement on the ellipsoid's surface.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $P_i$ denote the $i$thpoint on the surface of an ellipsoid: $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2} = 1$, where the principal semiaxes obey: $0 < a < b < c$.

Maximize the sum of squared distances:

\[\sum_{1\leq i < j \leq 2n}\left | P_i-P_j \right |^2\]

- over alle possible choices of $2n$ points (centroid of the points is the origin)

Please prove your result.
 
Mathematics news on Phys.org
Here´s the suggested solution:

\[\sum_{1\leq i<j\leq 2n}\left | P_i-P_j \right |^2 =\frac{1}{2}\sum_{i,j = 1}^{2n}\left | P_i-P_j \right |^2 =\frac{1}{2}\sum_{i,j = 1}^{2n}\left ( \left | P_i \right |^2+\left | P_j \right |^2-2P_iP_j \right )\\\\= \frac{1}{2}\left ( 2n\sum_{i=1}^{2n}\left | P_i \right |^2+2n\sum_{j=1}^{2n}\left | P_j \right |^2-2\sum_{i,j=1}^{2n}P_iP_j \right )\\\\=2n\sum_{i=1}^{2n}\left | P_i \right |^2-\sum_{i=1}^{2n}P_i\sum_{j=1}^{2n}P_j \\\\=2n\sum_{i=1}^{2n}\left | P_i \right |^2-\left |\sum_{i=1}^{2n}P_i \right |^2\]

The first term is clearly maximized when all points $P_i$ have the maximum distance from

the origin of $c$. The second term is minimized when $\sum P_i = 0$. We can satisfy both of

these simultaneously if $n$ points are chosen to be $(0, 0, c)$ and the other $n$ points are chosen

to be $(0, 0,−c)$. In this case,

\[\sum_{1\leq i<j\leq 2n}\left | P_i-P_j \right |^2 = 2n2nc^2-0 = 4n^2c^2.\]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top