- #1
lorenz0
- 148
- 28
- Homework Statement
- A spherical capacitor has internal radius ##R_1## and external radius ##R_2##.
Between the spheres there is a dielectric with constant ##\varepsilon_r##.
If the maximum electric field that can be applied without electrical discharges occurring is ##E_{max}##, find the corresponding maximum charge that can be put on the plates.
- Relevant Equations
- ##\Delta V=\int \vec{E}\cdot d\vec{l}##
The electric field is the one generated by the charge ##+Q## on the inner sphere of the capacitor, which generates a radial electric field ##\vec{E}=\frac{1}{4\pi\varepsilon_0}\frac{Q}{r^2}\hat{r}## which, due to the presence of the dielectric, become ##\vec{E}_d=\frac{1}{4\pi\varepsilon_0\varepsilon_r}\frac{Q}{r^2}\hat{r}## so ##\Delta V=\int \vec{E}_d\cdot d\vec{l}=\int_{R_1}^{R_2}\frac{1}{4\pi\varepsilon_0\varepsilon_r}\frac{Q}{r^2}\hat{r}\cdot d\vec{l}=\frac{Q}{4\pi\varepsilon_0\varepsilon_r}\frac{R_2-R_1}{R_1R_2}.##
So, ##E=\frac{\Delta V}{R_2-R_1}=\frac{Q}{4\pi\varepsilon_0\varepsilon_r}\frac{1}{R_1R_2}\leq E_{max}\Rightarrow \frac{Q_{max}}{4\pi\varepsilon_0\varepsilon_r}\frac{1}{R_1R_2}= E_{max}\Leftrightarrow Q_{max}=E_{max}4\pi\varepsilon_0\varepsilon_rR_1R_2##.
Does this make sense? Thanks
So, ##E=\frac{\Delta V}{R_2-R_1}=\frac{Q}{4\pi\varepsilon_0\varepsilon_r}\frac{1}{R_1R_2}\leq E_{max}\Rightarrow \frac{Q_{max}}{4\pi\varepsilon_0\varepsilon_r}\frac{1}{R_1R_2}= E_{max}\Leftrightarrow Q_{max}=E_{max}4\pi\varepsilon_0\varepsilon_rR_1R_2##.
Does this make sense? Thanks