Maximum charge on the plates of a capacitor

AI Thread Summary
The discussion focuses on calculating the maximum charge on the plates of a capacitor using Faraday's Law and circuit analysis. The derived formula for maximum charge, q_max, is found to be negative, which raises a question about its physical significance. The calculations involve integrating the electromotive force and applying Kirchhoff's loop rule, leading to the conclusion that the upper plate should be positively charged while the lower plate is negatively charged. Participants are prompted to verify the correctness of the solution and the choice of the surface area vector in the magnetic flux calculation. The overall inquiry centers on the implications of obtaining a negative maximum charge value.
lorenz0
Messages
151
Reaction score
28
Homework Statement
A square circuit of side ##a=10cm## with a resistance ##R=1k\Omega## and a capacitor ##C=100nF## is in a region of space where there is a ##\vec{B}## field perpendicular to circuit, pointing inward, which changes according to ##\frac{dB}{dt}=-0.01 T/s##
Find the maximum charge on the plates of the capacitor and which plate is going to be positively charged and which one is going to be negatively charged.
Relevant Equations
##\oint_{\Gamma}\vec{E}\cdot d\vec{l}=-\frac{d\phi(\vec{B})}{dt}##
What I have done:

The electromotive force due to Faraday's Law is: ##\mathcal{E}=-\frac{d\phi(\vec{B})}{dt}=\frac{d}{dt}(Ba^2)=a^2\frac{dB}{dt}=-10^{-4}V.##
In the circuit, going around the loop in a clockwise fashion:
##\oint_{\Gamma}\vec{E}\cdot d\vec{l}=-\frac{d\phi(\vec{B})}{dt}\Rightarrow iR+\frac{q}{C}=\mathcal{E}\Rightarrow \frac{dq}{dt}R+\frac{q}{C}=\mathcal{E}\Rightarrow \frac{dq}{dt}=-\frac{q-C\mathcal{E}}{RC}##
##\Rightarrow \int_{0}^{q}\frac{d\bar{q}}{\bar{q}-C\mathcal{E}}=-\int_{0}^{t}\frac{d\bar{t}}{RC}\Rightarrow [\ln(\bar{q}-C\mathcal{E})]_{0}^{q}=-\frac{t}{RC}\Rightarrow \ln\left(-\frac{q}{C\mathcal{E}}+1\right)=-\frac{t}{RC}\Rightarrow q(t)=C\mathcal{E}(1-e^{-\frac{t}{RC}})## so ##q_{max}=C\mathcal{E}=\left(100\cdot 10^{-9}\cdot (-10^{-4})\right) C=-10^{-11} C##.

Since the current goes around in a clockwise fashion, the upper plate should be charge positively and the bottom one negatively.

Now, I have a doubt: does it make sense that ##q_{max}## comes out negative?

Other than that, is my solution correct? Thanks
 

Attachments

  • circuit.png
    circuit.png
    6.4 KB · Views: 145
Last edited:
Physics news on Phys.org
Remember: ##\Phi=\int \vec B \cdot d\vec S##. How did you choose ##d\vec S##? Check signs
 
Gordianus said:
Remember: ##\Phi=\int \vec B \cdot d\vec S##. How did you choose ##d\vec S##? Check signs
##\phi=\int_{S}\vec{B}\cdot d\vec{S}## and since ##\vec{B}## is pointing inside the page and the area is oriented with the normal pointing away from the page this becomes ##\int_{S}(-B)dS=-B\int_{S}dS=-Ba^2## so ##\mathcal{E}=-\frac{d}{dt}\phi=-\frac{d}{dt}(-Ba^2)=a^2\frac{dB}{dt}.##
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top