- #1
SheepLon
- 4
- 0
Hey guys !
My mother language is not English by the way. Sorry for spelling and gramme. :)
I'm curious to see if you can help me with my problem.I have already tried for almost a week and did not get to a solution. I also know, that the Maximum likelihood estimation is part of statistics and probability calculation. But since it is about formula transformation, I used the analysis forum.
The Maximum likelihood estimation formula is the following:
$L(\theta = p) = \prod\limits_{i=1}^N \sum\limits_{m = 1}^{r-1}\left[ \frac{1}{r} \cdot 2^{k_i} \cdot \sin{\left(\frac{m \pi}{r}\right)} \cdot \cos{\left(\frac{m \pi}{r}\right)}^{k_i-1} \cdot \sin{\left(\frac{am \pi}{r}\right)} \cdot p^{\frac{k_i-a}{2}} \cdot (1-p)^{\frac{k_i+a}{2}}+ \frac{1}{r} \cdot 2^{k_i} \cdot \sin{\left(\frac{m \pi}{r}\right)} \cdot \cos{\left(\frac{m \pi}{r}\right)}^{k_i-1} \cdot \sin{\left(\frac{bm \pi}{r}\right)} \cdot p^{\frac{k_i+b}{2}} \cdot (1-p)^{\frac{k_i-b}{2}} \right]$
$= \prod\limits_i \sum\limits_{m = 1}^{r-1}\left[ \frac{1}{r} \cdot 2^{k_i} \cdot \sin{\left(\frac{m \pi}{r}\right)} \cdot \cos{\left(\frac{m \pi}{r}\right)}^{k_i-1} \cdot \left(\sin{\left(\frac{am \pi}{r}\right)} \cdot p^{\frac{k_i-a}{2}} \cdot (1-p)^{\frac{k_i+a}{2}} + \sin{\left(\frac{bm \pi}{r}\right)} \cdot p^{\frac{k_i+b}{2}} \cdot (1-p)^{\frac{k_i-b}{2}} \right)\right]$
where $p \in [0,1]$, $0^0:=1$, $a,b \in \mathbb{N}\backslash\{0\}$ with $a+b = r$I'm looking forward to your ideas.
"Hints":
- I exclude first the $p^{\frac{k_i}{2}} \cdot (1-p)^{\frac{k_i}{2}}$
That gave me at least another product without $m$, that I was able to pull out of the sum. However the other $p$'s I was not able to pull out.
**********************************************************************
**********************************************************************
**********************************************************************
A second, very similar Maximum likelihood estimation I need is the following
$L(\theta = p) = \prod\limits_{i=1}^N \sum\limits_{m = 1}^{r-1}\left[ \frac{1}{r} \cdot 2^{k_i} \cdot \sin{\left(\frac{m \pi}{r}\right)} \cdot \cos{\left(\frac{m \pi}{r}\right)}^{k_i-1} \cdot \sin{\left(\frac{am \pi}{r}\right)} \cdot p^{\frac{k_i-a}{2}} \cdot (1-p)^{\frac{k_i+a}{2}}+\sum\limits_{m = 1}^{r-1} \frac{1}{r} \cdot 2^{h_i} \cdot \sin{\left(\frac{m \pi}{r}\right)} \cdot \cos{\left(\frac{m \pi}{r}\right)}^{h_i-1} \cdot \sin{\left(\frac{bm \pi}{r}\right)} \cdot p^{\frac{h_i+b}{2}} \cdot (1-p)^{\frac{h_i-b}{2}} \right]$where $p \in [0,1]$, $0^0:=1$, $a,b \in \mathbb{N}\backslash\{0\}$ with $a+b = r$
My mother language is not English by the way. Sorry for spelling and gramme. :)
I'm curious to see if you can help me with my problem.I have already tried for almost a week and did not get to a solution. I also know, that the Maximum likelihood estimation is part of statistics and probability calculation. But since it is about formula transformation, I used the analysis forum.
The Maximum likelihood estimation formula is the following:
$L(\theta = p) = \prod\limits_{i=1}^N \sum\limits_{m = 1}^{r-1}\left[ \frac{1}{r} \cdot 2^{k_i} \cdot \sin{\left(\frac{m \pi}{r}\right)} \cdot \cos{\left(\frac{m \pi}{r}\right)}^{k_i-1} \cdot \sin{\left(\frac{am \pi}{r}\right)} \cdot p^{\frac{k_i-a}{2}} \cdot (1-p)^{\frac{k_i+a}{2}}+ \frac{1}{r} \cdot 2^{k_i} \cdot \sin{\left(\frac{m \pi}{r}\right)} \cdot \cos{\left(\frac{m \pi}{r}\right)}^{k_i-1} \cdot \sin{\left(\frac{bm \pi}{r}\right)} \cdot p^{\frac{k_i+b}{2}} \cdot (1-p)^{\frac{k_i-b}{2}} \right]$
$= \prod\limits_i \sum\limits_{m = 1}^{r-1}\left[ \frac{1}{r} \cdot 2^{k_i} \cdot \sin{\left(\frac{m \pi}{r}\right)} \cdot \cos{\left(\frac{m \pi}{r}\right)}^{k_i-1} \cdot \left(\sin{\left(\frac{am \pi}{r}\right)} \cdot p^{\frac{k_i-a}{2}} \cdot (1-p)^{\frac{k_i+a}{2}} + \sin{\left(\frac{bm \pi}{r}\right)} \cdot p^{\frac{k_i+b}{2}} \cdot (1-p)^{\frac{k_i-b}{2}} \right)\right]$
where $p \in [0,1]$, $0^0:=1$, $a,b \in \mathbb{N}\backslash\{0\}$ with $a+b = r$I'm looking forward to your ideas.
"Hints":
- I exclude first the $p^{\frac{k_i}{2}} \cdot (1-p)^{\frac{k_i}{2}}$
That gave me at least another product without $m$, that I was able to pull out of the sum. However the other $p$'s I was not able to pull out.
**********************************************************************
**********************************************************************
**********************************************************************
A second, very similar Maximum likelihood estimation I need is the following
$L(\theta = p) = \prod\limits_{i=1}^N \sum\limits_{m = 1}^{r-1}\left[ \frac{1}{r} \cdot 2^{k_i} \cdot \sin{\left(\frac{m \pi}{r}\right)} \cdot \cos{\left(\frac{m \pi}{r}\right)}^{k_i-1} \cdot \sin{\left(\frac{am \pi}{r}\right)} \cdot p^{\frac{k_i-a}{2}} \cdot (1-p)^{\frac{k_i+a}{2}}+\sum\limits_{m = 1}^{r-1} \frac{1}{r} \cdot 2^{h_i} \cdot \sin{\left(\frac{m \pi}{r}\right)} \cdot \cos{\left(\frac{m \pi}{r}\right)}^{h_i-1} \cdot \sin{\left(\frac{bm \pi}{r}\right)} \cdot p^{\frac{h_i+b}{2}} \cdot (1-p)^{\frac{h_i-b}{2}} \right]$where $p \in [0,1]$, $0^0:=1$, $a,b \in \mathbb{N}\backslash\{0\}$ with $a+b = r$
Last edited: